skip to main content


Title: (Un)equal demands and opportunities: Conceptualizing student navigation in undergraduate engineering programs
Abstract Background

It is well known that earning a bachelor's degree in engineering is a demanding task, but ripe with opportunity. For students from historically excluded demographic groups, this task is exacerbated by oppressive circumstances. Although considerable research has documented how student outcomes differ across demographic groups, much less is known about the dynamic processes that marginalize some students.

Purpose

The purpose of this article is to propose a conceptual model of student navigation in the context of undergraduate engineering programs. Our goal is to illustrate how localized, structural features unjustly shape the demands and opportunities encountered by students and influence how they respond.

Scope/Method

We developed our model using an iterative, four‐stage process. This process included (1)clarifyingthe purpose of the development process; (2)identifyingconcepts and insights from prior research; (3)synthesizingthe concepts and insights into propositions; and (4)visualizingthe suspected relationships between the salient constructs in the propositions.

Results

Our model focuses on the dynamic interactions between the characteristics of students, the embedded contexts in which they are situated, and the support infrastructure of their learning environment.

Conclusion

The resulting model illustrates the influence of structural features on how students a) respond to demands and opportunities and b) navigate obstacles present in the learning environment. Although its focus is on marginalized students in undergraduate engineering programs, the model may be applicable to STEM higher education more broadly.

 
more » « less
Award ID(s):
1943811
NSF-PAR ID:
10442089
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
112
Issue:
4
ISSN:
1069-4730
Format(s):
Medium: X Size: p. 890-917
Size(s):
["p. 890-917"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Engineering self‐efficacy, or the belief in one's own capabilities to complete engineering tasks, has been shown to predict greater motivation, academic performance, and retention of engineering students. Investigating the types of experiences that influence engineering students' self‐efficacy can reveal ways to support students in their undergraduate engineering programs.

    Purpose/Hypothesis(es)

    The purpose of this study was to qualitatively examine how undergraduate engineering students describe the sources of their engineering self‐efficacy and whether patterns in students' responses differed by gender.

    Design/Method

    Participants (N = 654) were undergraduate engineering students attending two public, land‐grant universities in the U.S. Open‐ended survey questions were used to identify the events, social experiences, and emotions that students described as relevant to their engineering self‐efficacy. Chi‐square analyses were used to investigate whether response patterns varied by gender.

    Results

    Students described enactive performances as their most salient source of self‐efficacy, but interesting insights also emerged about how engineering students draw from social and emotional experiences when developing their self‐efficacy. Women more often referred to social sources of self‐efficacy and reported fewer positive emotions than did men.

    Conclusion

    Findings suggest ways that educators can provide more targeted opportunities for students to develop their self‐efficacy in engineering.

     
    more » « less
  2. Abstract Background

    Noncognitive and affective (NCA) factors (e.g., belonging, engineering identity, motivation, mindset, personality, etc.) are important to undergraduate student success. However, few studies have considered how these factors coexist and act in concert.

    Purpose/Hypothesis

    We hypothesize that students cluster into several distinct collections of NCA factors and that identifying and considering the factors together may inform student support programs and engineering education.

    Design/Method

    We measured 28 NCA factors using a survey instrument with strong validity evidence. We gathered responses from 2339 engineering undergraduates at 17 U.S. institutions and used Gaussian mixture modeling (GMM) to group respondents into clusters.

    Results

    We found four distinct profiles of students in our data and a set of unclustered students with the NCA factor patterns varying substantially by cluster. Correlations of cluster membership to self‐reported incoming academic performance measures were not strong, suggesting that students' NCA factors rather than traditionally used cognitive measures may better distinguish among students in engineering programs.

    Conclusions

    GMM is a powerful technique for person‐centered clustering of high‐dimensional datasets. The four distinct clusters of students discovered in this research illustrate the diversity of engineering students' NCA profiles. The NCA factor patterns within the clusters provide new insights on how these factors may function together and provide opportunities to intervene on multiple factors simultaneously, potentially resulting in more comprehensive and effective interventions. This research leads to future work on both student success modeling and student affairs–academic partnerships to understand and promote holistic student success.

     
    more » « less
  3. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less
  4. Abstract Background

    Participating in undergraduate research experiences (UREs) supports the development of engineering students' technical and professional skills. However, little is known about the perceptions of research or researchers that students develop through these experiences. Understanding these perceptions will provide insight into how students come to understand knowledge evaluation and creation, while allowing research advisors to better support student development.

    Purpose

    In this paper, we explore how undergraduate engineering students perceive what it means to do research and be a researcher, using identity and epistemic cognition as sensitizing concepts. Our goal is to explore students' views of UREs to make the benefits of these experiences more accessible.

    Design/Method

    We created and adapted open‐ended survey items from previously published studies. We collected responses from mechanical and biomedical engineering undergraduates at five institutions (n= 154) and used an inductive approach to analyze responses.

    Results

    We developed four salient themes from our analysis: (a) research results in discovery, (b) research includes dissemination such as authorship, (c) research findings are integrated into society, and (d) researchers demonstrate self‐regulation.

    Conclusions

    The four themes highlight factors that students perceive as part of a researcher identity and aspects of epistemic cognition in the context of UREs. These results suggest structuring UREs to provide opportunities for discovery, dissemination, societal impact, and self‐regulation will help support students in their development as researchers.

     
    more » « less
  5. Abstract Background

    Recent research has demonstrated the importance of entrepreneurship education programs (EEPs) in the professional development of engineering students. Numerous universities have adopted various forms of EEPs which are typically offered as elective programs. To create suitable programs that will encourage students to seek out EEPs, it is critical to understand the factors that influence student participation in EEPs. Using qualitative research methods, we examined the question “What influences engineering students’ participation in entrepreneurship education programs?” The purpose of our work is to identify and understand the factors impacting engineering student participation in EEPs.

    Results

    Analysis of 20 semi-structured interviews of undergraduate engineering students was conducted using the first and second cycle coding methods to determine key factors that inform students’ participation in EEPs. We found that student decisions to participate in EEPs are influenced by several factors: entrepreneurial self-efficacy, entrepreneurial intent, attitude, subjective norm, goals, academic transitions, information and resources, social capital, opportunities and challenges, and past participation in EEPs.

    Conclusions

    Findings demonstrate that students’ non-compulsory participation is not a result of a single act, but is regulated by multiple factors. Explication of these factors using our qualitative results provides actionable guidance for EEPs to encourage engineering students’ participation and offers directions for future research.

     
    more » « less