Abstract BackgroundParticipating in undergraduate research experiences (UREs) supports the development of engineering students' technical and professional skills. However, little is known about the perceptions of research or researchers that students develop through these experiences. Understanding these perceptions will provide insight into how students come to understand knowledge evaluation and creation, while allowing research advisors to better support student development. PurposeIn this paper, we explore how undergraduate engineering students perceive what it means to do research and be a researcher, using identity and epistemic cognition as sensitizing concepts. Our goal is to explore students' views of UREs to make the benefits of these experiences more accessible. Design/MethodWe created and adapted open‐ended survey items from previously published studies. We collected responses from mechanical and biomedical engineering undergraduates at five institutions (n= 154) and used an inductive approach to analyze responses. ResultsWe developed four salient themes from our analysis: (a) research results in discovery, (b) research includes dissemination such as authorship, (c) research findings are integrated into society, and (d) researchers demonstrate self‐regulation. ConclusionsThe four themes highlight factors that students perceive as part of a researcher identity and aspects of epistemic cognition in the context of UREs. These results suggest structuring UREs to provide opportunities for discovery, dissemination, societal impact, and self‐regulation will help support students in their development as researchers.
more »
« less
(Un)equal demands and opportunities: Conceptualizing student navigation in undergraduate engineering programs
Abstract BackgroundIt is well known that earning a bachelor's degree in engineering is a demanding task, but ripe with opportunity. For students from historically excluded demographic groups, this task is exacerbated by oppressive circumstances. Although considerable research has documented how student outcomes differ across demographic groups, much less is known about the dynamic processes that marginalize some students. PurposeThe purpose of this article is to propose a conceptual model of student navigation in the context of undergraduate engineering programs. Our goal is to illustrate how localized, structural features unjustly shape the demands and opportunities encountered by students and influence how they respond. Scope/MethodWe developed our model using an iterative, four‐stage process. This process included (1)clarifyingthe purpose of the development process; (2)identifyingconcepts and insights from prior research; (3)synthesizingthe concepts and insights into propositions; and (4)visualizingthe suspected relationships between the salient constructs in the propositions. ResultsOur model focuses on the dynamic interactions between the characteristics of students, the embedded contexts in which they are situated, and the support infrastructure of their learning environment. ConclusionThe resulting model illustrates the influence of structural features on how students a) respond to demands and opportunities and b) navigate obstacles present in the learning environment. Although its focus is on marginalized students in undergraduate engineering programs, the model may be applicable to STEM higher education more broadly.
more »
« less
- Award ID(s):
- 1943811
- PAR ID:
- 10442089
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Engineering Education
- Volume:
- 112
- Issue:
- 4
- ISSN:
- 1069-4730
- Format(s):
- Medium: X Size: p. 890-917
- Size(s):
- p. 890-917
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundEngineering education traditionally emphasizes technical skills, sometimes at the cost of under‐preparing graduates for the real‐world engineering context. In recent decades, attempts to address this issue include increasing project‐based assignments and engineering design courses in curricula; however, a skills gap between education and industry remains. Purpose/HypothesisThis study aims to understand how undergraduate engineering students perceive product design before and after an upper‐level project‐based design course, as measured through concept maps. The purpose is to measure whether and how students account for the technical and nontechnical elements of design, as well as how a third‐year design course influences these design perceptions. Design/MethodConcept maps about product design were collected from 105 third‐year engineering students at the beginning and end of a design course. Each concept map's content and structure were quantitatively analyzed to evaluate the students' conceptual understandings and compare them across disciplines in the before and after conditions. ResultsThe analyses report on how student conceptions differ by discipline at the outset and how they changed after taking the course. Mechanical Engineering students showed a decrease in business‐related content and an increased focus on societal content, while students in the Engineering Management and Industrial and Systems Engineering programs showed an increase in business topics, specifically market‐related content. ConclusionThis study reveals how undergraduate students conceptualize product design, and specifically to what extent they consider engineering, business, and societal factors. The design courses were shown to significantly shape student conceptualizations of product design, and they did so in a way that mirrored the topics in the course syllabi. The findings offer insights into the education‐practice skills gap and may help future educators to better prepare engineering students to meet industry needs.more » « less
-
Abstract BackgroundEngineering‐oriented bridge programs and camps are popular strategies for broadening participation. The students who often serve as counselors and mentors in these programs are integral to their success. PurposePredicated on the belief that mentoring contributes to positive outcomes for the mentors themselves, we sought to understand how undergraduate student mentors approached and experienced their work with a 6‐day overnight, NSF‐sponsored youth engineering camp (YEC). This study was guided by the question: How did YEC camp counselors approach and experience their roles as mentors? Design/MethodsWe conducted an exploratory qualitative study of four Black undergraduate engineering students' experiences with and approaches to near‐peer mentorship in the YEC program. Data consisted of transcripts from two post‐program interviews and one written reflection from each participant. We analyzed data through abductive coding and the funds of knowledge framework. ResultsThrough subsequent interpretation of code categories, we found YEC mentors: (1) engaged in altruistic motivations as YEC mentors, (2) leveraged previous experiences to guide their approaches to mentorship, and (3) engaged in self‐directed learning and development. ConclusionsThis study highlights the knowledge and strategies that YEC mentors drew upon in their roles, and how they sought and achieved various personal, academic, and professional benefits. Insights from this study illustrate how near‐peer mentors can support their and others' engineering aspirations.more » « less
-
Abstract BackgroundWhile studies examining graduate engineering student attrition have grown more prevalent, there is an incomplete understanding of the plight faced by persisting students. As mental health and well‐being crises emerge in graduate student populations, it is important to understand how students conceptualize their well‐being in relation to their decisions to persist or depart from their program. Purpose/HypothesisThe purpose of this article is to characterize the well‐being of students who endured overwhelming difficulties in their doctoral engineering programs. The PERMA‐V framework of well‐being theory proposes that well‐being is a multifaceted construct comprised ofpositive emotion,engagement,relationships,meaning,accomplishment, andvitality. Design/MethodData were collected in a mixed‐methods research design through two rounds of qualitative semistructured interviews and a survey‐based PERMA‐V profiling instrument. Interview data were analyzed thematically using the PERMA‐V framework as an a priori coding schema and narrative configuration and analysis. ResultsThe narratives demonstrated the interconnectedness between the different facets of well‐being and how they were influenced by various experiences the participants encountered. The participants in this study faced prolonged and extreme adversity. By understanding how the multiple dimensions of well‐being theory manifested in their narratives, we better understood and interpreted how these participants chose to persist.more » « less
-
Abstract BackgroundCreativity is increasingly recognized as an important skill for success in the field of engineering, but most traditional, post‐secondary engineering education programs do not reward creative efforts. Failing to recognize creativity or creative efforts can have particularly negative effects for those students with attention deficit hyperactivity disorder (ADHD), who may exhibit enhanced divergent thinking ability yet struggle in the traditional educational environment. Purpose/HypothesisThis study was conducted to investigate how ADHD characteristics, academic aptitude, and one important component of creativity (divergent thinking) contribute to academic performance in engineering programs and how traditional markers of academic performance and ADHD characteristics predict divergent thinking. Design/MethodUndergraduate engineering students (n= 60) completed measures of ADHD symptoms and divergent thinking. Scholastic Aptitude Test (SAT) scores and grade point average (GPA) were collected from university records, and hypotheses were tested using a series of multivariate regression models. ResultsVerbal SAT scores were the only positive predictor of overall GPA and engineering GPA. ADHD characteristics did not significantly predict overall GPA but negatively predicted engineering GPA. ADHD characteristics were the only positive predictor of divergent thinking ability. ConclusionsADHD characteristics negatively predict academic performance (i.e., GPA) in engineering programs but are more predictive of divergent thinking ability than traditional markers of academic performance.more » « less