skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: (Un)equal demands and opportunities: Conceptualizing student navigation in undergraduate engineering programs
Abstract BackgroundIt is well known that earning a bachelor's degree in engineering is a demanding task, but ripe with opportunity. For students from historically excluded demographic groups, this task is exacerbated by oppressive circumstances. Although considerable research has documented how student outcomes differ across demographic groups, much less is known about the dynamic processes that marginalize some students. PurposeThe purpose of this article is to propose a conceptual model of student navigation in the context of undergraduate engineering programs. Our goal is to illustrate how localized, structural features unjustly shape the demands and opportunities encountered by students and influence how they respond. Scope/MethodWe developed our model using an iterative, four‐stage process. This process included (1)clarifyingthe purpose of the development process; (2)identifyingconcepts and insights from prior research; (3)synthesizingthe concepts and insights into propositions; and (4)visualizingthe suspected relationships between the salient constructs in the propositions. ResultsOur model focuses on the dynamic interactions between the characteristics of students, the embedded contexts in which they are situated, and the support infrastructure of their learning environment. ConclusionThe resulting model illustrates the influence of structural features on how students a) respond to demands and opportunities and b) navigate obstacles present in the learning environment. Although its focus is on marginalized students in undergraduate engineering programs, the model may be applicable to STEM higher education more broadly.  more » « less
Award ID(s):
1943811
PAR ID:
10442089
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
112
Issue:
4
ISSN:
1069-4730
Format(s):
Medium: X Size: p. 890-917
Size(s):
p. 890-917
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundParticipating in undergraduate research experiences (UREs) supports the development of engineering students' technical and professional skills. However, little is known about the perceptions of research or researchers that students develop through these experiences. Understanding these perceptions will provide insight into how students come to understand knowledge evaluation and creation, while allowing research advisors to better support student development. PurposeIn this paper, we explore how undergraduate engineering students perceive what it means to do research and be a researcher, using identity and epistemic cognition as sensitizing concepts. Our goal is to explore students' views of UREs to make the benefits of these experiences more accessible. Design/MethodWe created and adapted open‐ended survey items from previously published studies. We collected responses from mechanical and biomedical engineering undergraduates at five institutions (n= 154) and used an inductive approach to analyze responses. ResultsWe developed four salient themes from our analysis: (a) research results in discovery, (b) research includes dissemination such as authorship, (c) research findings are integrated into society, and (d) researchers demonstrate self‐regulation. ConclusionsThe four themes highlight factors that students perceive as part of a researcher identity and aspects of epistemic cognition in the context of UREs. These results suggest structuring UREs to provide opportunities for discovery, dissemination, societal impact, and self‐regulation will help support students in their development as researchers. 
    more » « less
  2. Abstract BackgroundEngineering education traditionally emphasizes technical skills, sometimes at the cost of under‐preparing graduates for the real‐world engineering context. In recent decades, attempts to address this issue include increasing project‐based assignments and engineering design courses in curricula; however, a skills gap between education and industry remains. Purpose/HypothesisThis study aims to understand how undergraduate engineering students perceive product design before and after an upper‐level project‐based design course, as measured through concept maps. The purpose is to measure whether and how students account for the technical and nontechnical elements of design, as well as how a third‐year design course influences these design perceptions. Design/MethodConcept maps about product design were collected from 105 third‐year engineering students at the beginning and end of a design course. Each concept map's content and structure were quantitatively analyzed to evaluate the students' conceptual understandings and compare them across disciplines in the before and after conditions. ResultsThe analyses report on how student conceptions differ by discipline at the outset and how they changed after taking the course. Mechanical Engineering students showed a decrease in business‐related content and an increased focus on societal content, while students in the Engineering Management and Industrial and Systems Engineering programs showed an increase in business topics, specifically market‐related content. ConclusionThis study reveals how undergraduate students conceptualize product design, and specifically to what extent they consider engineering, business, and societal factors. The design courses were shown to significantly shape student conceptualizations of product design, and they did so in a way that mirrored the topics in the course syllabi. The findings offer insights into the education‐practice skills gap and may help future educators to better prepare engineering students to meet industry needs. 
    more » « less
  3. Abstract BackgroundEngineering‐oriented bridge programs and camps are popular strategies for broadening participation. The students who often serve as counselors and mentors in these programs are integral to their success. PurposePredicated on the belief that mentoring contributes to positive outcomes for the mentors themselves, we sought to understand how undergraduate student mentors approached and experienced their work with a 6‐day overnight, NSF‐sponsored youth engineering camp (YEC). This study was guided by the question: How did YEC camp counselors approach and experience their roles as mentors? Design/MethodsWe conducted an exploratory qualitative study of four Black undergraduate engineering students' experiences with and approaches to near‐peer mentorship in the YEC program. Data consisted of transcripts from two post‐program interviews and one written reflection from each participant. We analyzed data through abductive coding and the funds of knowledge framework. ResultsThrough subsequent interpretation of code categories, we found YEC mentors: (1) engaged in altruistic motivations as YEC mentors, (2) leveraged previous experiences to guide their approaches to mentorship, and (3) engaged in self‐directed learning and development. ConclusionsThis study highlights the knowledge and strategies that YEC mentors drew upon in their roles, and how they sought and achieved various personal, academic, and professional benefits. Insights from this study illustrate how near‐peer mentors can support their and others' engineering aspirations. 
    more » « less
  4. Abstract BackgroundIncreasing engineering students' engagement with public welfare is central to promoting ethical responsibility among engineers and enhancing engineers' capacity to serve the public good. However, little research has investigated how student experience attempts to increase engagement with public welfare concerns. Purpose/HypothesisThis study identifies and analyzes the challenges facing efforts to increase engineering students' engagement with the social and ethical implications of their work through a study of students' experiences at two engineering programs that emphasize public welfare engagement. Design/MethodsWe conducted interviews with engineering students (n= 26) and ethnographic observations of program events, classes, presentations, and social groups (n= 60) at two engineering programs that focus on engagement with public welfare and foreground learning about the social context and social impacts of engineering. We analyzed these data to identify areas in which students experienced challenges integrating considerations of public welfare into their work. ResultsWe found that four main areas where engineering students experienced difficulty engaging with considerations of public welfare: (a) defining and defending their identities as engineers; (b) justifying the value of nontechnical work and relevance to engineering; (c) redefining engineering expertise and integrating community knowledge into projects; and (d) addressing ambiguous questions and ethics. ConclusionsThis work contributes to knowledge about the barriers to increasing students' engagement with issues of public welfare, even when programs encourage such engagement. These findings are relevant to broader efforts to increase concerns for ethics, social responsibility, and public welfare among engineers. 
    more » « less
  5. Abstract BackgroundEngineering requires new solutions to improve undergraduate performance outcomes, including course grades and continued enrollment in engineering pathways. Belonging and engineering role identity have long been associated with successful outcomes in engineering, including academic success, retention, and well‐being. PurposeWe measure the relationships between belonging and role identity at the beginning of a first‐year engineering course with course grade and continued enrollment in engineering courses. We test the effect of an ecological belonging intervention on student belonging, course grade, and persistence. MethodStudents (n = 834) reported their sense of belonging in engineering, cross‐racial experiences, engineering performance/competence, interest in engineering, and engineering recognition before and after an in‐class intervention to improve classroom belonging ecology. Through a series of longitudinal multigroup path analyses, a form of structural equation modeling, we tested the predictive relationships of the measured constructs with engineering identity and investigated differences in these relationships by student gender and race/ethnicity. FindingsThe proposed model predicts course grades and continued enrollment, providing insight into the potential for interventions to support first‐year engineering students. Group analysis results demonstrate the difference in the function of these psychosocial measures for women and Black, Latino/a/x, and Indigenous (BLI) students, providing insights into the potential importance of sociocultural interventions within engineering classrooms to improve the engineering climate, engagement, and retention of students. ImplicationsThe results highlight the need for more specific, nuanced theoretical investigations of how marginalized students experience the engineering environment and develop social belonging and engineering role identity. 
    more » « less