skip to main content


Title: Evidence of exploitative competition between honey bees and native bees in two California landscapes
Abstract

Human‐mediated species introductions provide real‐time experiments in how communities respond to interspecific competition. For example, managed honey beesApis mellifera(L.) have been widely introduced outside their native range and may compete with native bees for pollen and nectar. Indeed, multiple studies suggest that honey bees and native bees overlap in their use of floral resources. However, for resource overlap to negatively impact resource collection by native bees, resource availability must also decline, and few studies investigate impacts of honey bee competition on native bee floral visits and floral resource availability simultaneously.

In this study, we investigate impacts of increasing honey bee abundance on native bee visitation patterns, pollen diets, and nectar and pollen resource availability in two Californian landscapes: wildflower plantings in the Central Valley and montane meadows in the Sierra.

We collected data on bee visits to flowers, pollen and nectar availability, and pollen carried on bee bodies across multiple sites in the Sierra and Central Valley. We then constructed plant‐pollinator visitation networks to assess how increasing honey bee abundance impacted perceived apparent competition (PAC), a measure of niche overlap, and pollinator specialization (d'). We also compared PAC values against null expectations to address whether observed changes in niche overlap were greater or less than what we would expect given the relative abundances of interacting partners.

We find clear evidence of exploitative competition in both ecosystems based on the following results: (1) honey bee competition increased niche overlap between honey bees and native bees, (2) increased honey bee abundance led to decreased pollen and nectar availability in flowers, and (3) native bee communities responded to competition by shifting their floral visits, with some becoming more specialized and others becoming more generalized depending on the ecosystem and bee taxon considered.

Although native bees can adapt to honey bee competition by shifting their floral visits, the coexistence of honey bees and native bees is tenuous and will depend on floral resource availability. Preserving and augmenting floral resources is therefore essential in mitigating negative impacts of honey bee competition. In two California ecosystems, honey bee competition decreases pollen and nectar resource availability in flowers and alters native bee diets with potential implications for bee conservation and wildlands management.

 
more » « less
PAR ID:
10442102
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
92
Issue:
9
ISSN:
0021-8790
Page Range / eLocation ID:
p. 1802-1814
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Introduced species can have cascading effects on ecological communities, but indirect effects of species introductions are rarely the focus of ecological studies. For example, managed honey bees (Apis mellifera) have been widely introduced outside their native range and are increasingly dominant floral visitors. Multiple studies have documented how honey bees impact native bee communities through floral resource competition, but few have quantified how these competitive interactions indirectly affect pollination and plant reproduction. Such indirect effects are hard to detect because honey bees are themselves pollinators and may directly impact pollination through their own floral visits. The potentially huge but poorly understood impacts that non‐native honey bees have on native plant populations combined with increased pressure from beekeepers to place hives in U.S. National Parks and Forests makes exploring impacts of honey bee introductions on native plant pollination of pressing concern. In this study, we used experimental hive additions, field observations, as well as single‐visit and multiple‐visit pollination effectiveness trials across multiple years to untangle the direct and indirect impacts of increasing honey bee abundance on the pollination of an ecologically important wildflower,Camassia quamash. We found compelling evidence that honey bee introductions indirectly decrease pollination by reducing nectar and pollen availability and competitively excluding visits from more effective native bees. In contrast, the direct impact of honey bee visits on pollination was negligible, and, if anything, negative. Honey bees were ineffective pollinators, and increasing visit quantity could not compensate for inferior visit quality. Indeed, although the effect was not statistically significant, increased honey bee visits had a marginally negative impact on seed production. Thus, honey bee introductions may erode longstanding plant‐pollinator mutualisms, with negative consequences for plant reproduction. Our study calls for a more thorough understanding of the indirect effects of species introductions and more careful coordination of hive placements.

     
    more » « less
  2. Abstract

    Despite widespread recognition of the need for long‐term monitoring of pollinator abundances and pollination service provision, such studies are exceedingly rare.

    In this study, we assess changes in bee visitation and net capture rates for 73 species visiting watermelon crop flowers at 19 farms in the mid‐Atlantic region of the United States from 2005 to 2012.

    Over the 8 years, we found a 58% decline in wild bee visitation to crop flowers, but no significant change in honey bee visitation rate. Most types of wild bees showed similar declines in both the visitation and the net capture data; bumble bees, however, declined by 56% in the visitation data but showed no change in net capture rates. Trends in pollination services, that is, estimated pollen deposition, largely followed the trends in visitation and net capture rates.

    While we detected large and significant declines in wild bees when using generalised linear mixed models (GLMMs), permutation analyses that account for non‐directional variation in abundance were non‐significant, demonstrating the challenge of identifying and describing trends in highly variable populations.

    As far as we are aware, this article represents one of fewer than 10 published time‐series (defined as >5 years of data) studies of changes in bee abundance, and one of only two such studies conducted in an agricultural setting. More such studies are needed in order to understand the magnitude of bee decline and its ramifications for crop pollination.

     
    more » « less
  3. Summary

    Floral traits, including floral display and nutritional rewards from pollen and nectar, drive pollinator visitation. Even within a single plant species, environmental factors can influence the quality and quantity of floral resources. Yet, the ecological interactions driving this variation in floral resources, especially those belowground, remain unknown.

    Here, we investigate how soil microbial community composition and nutrient availability, specifically distinct arbuscular mycorrhizal fungi (AMF) species and phosphorus (P) supply, affect plant growth, AMF traits, floral traits, and how that, in turn, affects bee visitation.

    We found that increased AMF richness of functional diversity enhanced floral display (flower size and number) and rewards (nectar volume and pollen protein) and increased bee visitation. Using structural equation modeling, we found that AMF associations could boost bee visitation by enhancing flower size. However, trade‐offs occur; flower size correlates negatively with root colonization but positively with hyphal length, suggesting that AMF traits drive the effects of AMF on flower growth.

    Overall, the effect of AMF on floral traits and bee visitation was not homogenous; instead, AMF trait differences interact with P supply, resulting in varying effects on floral traits and subsequently bee foraging dynamics. These results highlight that focusing on beneficial belowground interactions could provide an opportunity to bolster bee visitation.

     
    more » « less
  4. Abstract

    Floral structures, such as stamen appendages, play crucial roles in pollinator attraction, pollen release dynamics and, ultimately, the reproductive success of plants. The pollen‐rewarding, bee buzz‐pollinated flowers ofMelastomataceaeoften bear conspicuous staminal appendages. Surprisingly, their functional role in the pollination process remains largely unclear. We useHuberia bradeanaBochorny & R. Goldenb. (Melastomataceae) with conspicuously elongated, twisted stamen appendages to investigate their functional role in the pollination process.

    We studied the effect of stamen appendages on pollinator behaviour and reproductive success by comparing manipulated flowers (appendages removed) with unmanipulated flowers. To assess bee pollinator behaviour, we measured three properties of buzzes (vibrations) produced by bees onHuberiaflowers: frequency, duration and number of buzzes per flower visit. We measured male and female reproductive success by monitoring pollen release and deposition after single bee visits. Finally, we used artificial vibrations and laser vibrometry to assess how flower vibrational properties change with the removal of stamen appendages.

    Our results show that the absence of staminal appendages does not modify bee buzzing behaviour. Pollen release was higher in unmanipulated flowers, but stigmatic pollen loads differ only marginally between the two treatments. We also detected lower vibration amplitudes in intact flowers as compared to manipulated flowers in artificial vibration experiments.

    The presence of connective appendages are crucial in transmitting vibrations and assuring optimal pollen release. Therefore, we propose that the high diversity of colours, shapes and sizes of connective appendages in buzz‐pollinated flowers may have evolved by selection through male fitness.

     
    more » « less
  5. Abstract

    Pollinators are introduced to agroecosystems to provide pollination services. Introductions of managed pollinators often promote ecosystem services, but it remains largely unknown whether they also affect evolutionary mutualisms between wild pollinators and plants.

    Here, we developed a model to assess effects of managed honey bees on mutualisms between plants and wild pollinators. Our model tracked how interactions among wild pollinators and honey bees affected pollinator and plant populations.

    We show that when managed honey bees have a competitive advantage over wild pollinators, or a greater carrying capacity, the honey bees displace the wild pollinator. This leads to reduced plant density because plants benefit less by visits from honey bees than wild pollinators that coevolved with the plants.

    As wild pollinators are displaced, plants evolve by increasing investment in traits that are attractive for honey bees but not wild pollinators. This evolutionary switch promotes wild pollinator displacement. However, higher mutualism investment costs by the plant to the honey bee can promote pollinator coexistence.

    Our results show plant evolution can promote displacement of wild pollinators by managed honey bees, while limited plant evolution may lead to pollinator coexistence. More broadly, effects of honey bees on wild pollinators in agroecosystems, and effects on ecosystem services, may depend on the capacity of plant populations to evolve.

     
    more » « less