skip to main content


Title: Pollen composition significantly impacts the development and survival of the native small carpenter bee, Ceratina calcarata

As native bee populations decrease, there is a need to better understand their nutritional requirements to sustain healthy pollinator populations. A common native bee to eastern North America is the small carpenter bee,Ceratina calcarata. Previous studies have shown that the primary pollen sources forC. calcarataconsist of clover and rose.

The aim of this study is to compare the effects of diet composition on body size, development and survival. Artificial pollen diets were created using five different ratios of commercially available clover and rose pollen.

Diets containing higher ratios of clover pollen produced larger individuals with increased survival rates and faster development times. To examine this further, the macronutrient profiles of clover and rose pollen were characterised comparing: protein, sugar, fatty acid, and amino acid content. Results indicated that rose pollen contained significantly higher protein and sugar content, while clover pollen had higher concentrations of essential amino acids. These are crucial to bee health and development, which helps to explain the increased survivorship observed on high clover diet treatments.

Taken together, these results show that clover pollen provides a higher quality diet for larval development and survival of the native small carpenter bee. This research indicates that diet has a significant effect on the health of the native pollinator community and more research is needed to further explore the balance between pollen quality and availability, including essential macronutrients and the availability of these floral sources for wild bees.

 
more » « less
NSF-PAR ID:
10452046
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecological Entomology
Volume:
46
Issue:
2
ISSN:
0307-6946
Page Range / eLocation ID:
p. 232-239
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Human‐mediated species introductions provide real‐time experiments in how communities respond to interspecific competition. For example, managed honey beesApis mellifera(L.) have been widely introduced outside their native range and may compete with native bees for pollen and nectar. Indeed, multiple studies suggest that honey bees and native bees overlap in their use of floral resources. However, for resource overlap to negatively impact resource collection by native bees, resource availability must also decline, and few studies investigate impacts of honey bee competition on native bee floral visits and floral resource availability simultaneously.

    In this study, we investigate impacts of increasing honey bee abundance on native bee visitation patterns, pollen diets, and nectar and pollen resource availability in two Californian landscapes: wildflower plantings in the Central Valley and montane meadows in the Sierra.

    We collected data on bee visits to flowers, pollen and nectar availability, and pollen carried on bee bodies across multiple sites in the Sierra and Central Valley. We then constructed plant‐pollinator visitation networks to assess how increasing honey bee abundance impacted perceived apparent competition (PAC), a measure of niche overlap, and pollinator specialization (d'). We also compared PAC values against null expectations to address whether observed changes in niche overlap were greater or less than what we would expect given the relative abundances of interacting partners.

    We find clear evidence of exploitative competition in both ecosystems based on the following results: (1) honey bee competition increased niche overlap between honey bees and native bees, (2) increased honey bee abundance led to decreased pollen and nectar availability in flowers, and (3) native bee communities responded to competition by shifting their floral visits, with some becoming more specialized and others becoming more generalized depending on the ecosystem and bee taxon considered.

    Although native bees can adapt to honey bee competition by shifting their floral visits, the coexistence of honey bees and native bees is tenuous and will depend on floral resource availability. Preserving and augmenting floral resources is therefore essential in mitigating negative impacts of honey bee competition. In two California ecosystems, honey bee competition decreases pollen and nectar resource availability in flowers and alters native bee diets with potential implications for bee conservation and wildlands management.

     
    more » « less
  2. null (Ed.)
    Bees collect pollen from flowers for their offspring, and by doing so contribute critical pollination services for our crops and ecosystems. Unlike many managed bee species, wild bees are thought to obtain much of their microbiome from the environment. However, we know surprisingly little about what plant species bees visit and the microbes associated with the collected pollen. Here, we addressed the hypothesis that the pollen and microbial components of bee diets would change across the range of the bee, by amplicon sequencing pollen provisions of a widespread small carpenter bee, Ceratina calcarata, across three populations. Ceratina calcarata was found to use a diversity of floral resources across its range, but the bacterial genera associated with pollen provisions were very consistent. Acinetobacter, Erwinia, Lactobacillus, Sodalis, Sphingomonas and Wolbachia were among the top ten bacterial genera across all sites. Ceratina calcarata uses both raspberry (Rubus) and sumac (Rhus) stems as nesting substrates, however nests within these plants showed no preference for host plant pollen. Significant correlations in plant and bacterial co-occurrence differed between sites, indicating that many of the most common bacterial genera have either regional or transitory floral associations. This range-wide study suggests microbes present in brood provisions are conserved within a bee species, rather than mediated by climate or pollen composition. Moving forward, this has important implications for how these core bacteria affect larval health and whether these functions vary across space and diet. These data increase our understanding of how pollinators interact with and adjust to their changing environment. 
    more » « less
  3. Abstract

    Deciphering processes that contribute to genetic differentiation and divergent selection of natural populations is useful for evaluating the adaptive potential and resilience of organisms faced with various anthropogenic stressors. Insect pollinator species, including wild bees, provide critical ecosystem services but are highly susceptible to biodiversity declines. Here, we use population genomics to infer the genetic structure and test for evidence of local adaptation in an economically important native pollinator, the small carpenter bee (Ceratina calcarata).Using genome‐wide SNP data (n = 8302), collected from specimens across the species' entire distribution, we evaluated population differentiation and genetic diversity and identified putative signatures of selection in the context of geographic and environmental variation. Results of the analyses of principal component and Bayesian clustering were concordant with the presence of two to three genetic clusters, associated with landscape features and inferred phylogeography of the species. All populations examined in our study demonstrated a heterozygote deficit, along with significant levels of inbreeding. We identified 250 robust outlier SNPs, corresponding to 85 annotated genes with known functional relevance to thermoregulation, photoperiod, and responses to various abiotic and biotic stressors. Taken together, these data provide evidence for local adaptation in a wild bee and highlight genetic responses of native pollinators to landscape and climate features.

     
    more » « less
  4. Abstract

    Sea ice loss is fundamentally altering the Arctic marine environment. Yet there is a paucity of data on the adaptability of food webs to ecosystem change, including predator–prey interactions. Polar bears (Ursus maritimus) are an important subsistence resource for Indigenous people and an apex predator that relies entirely on the under‐ice food web to meet its energy needs. In this study, we assessed whether polar bears maintained dietary energy density by prey switching in response to spatiotemporal variation in prey availability. We compared the macronutrient composition of diets inferred from stable carbon and nitrogen isotopes in polar bear guard hair (primarily representing summer/fall diet) during periods when bears had low and high survival (2004–2016), between bears that summered on land versus pack ice, and between bears occupying different regions of the Alaskan and Canadian Beaufort Sea. Polar bears consumed diets with lower energy density during periods of low survival, suggesting that concurrent increased dietary proportions of beluga whales (Delphinapterus leucas) did not offset reduced proportions of ringed seals (Pusa hispida). Diets with the lowest energy density and proportions from ringed seal blubber were consumed by bears in the western Beaufort Sea (Alaska) during a period when polar bear abundance declined. Intake required to meet energy requirements of an average free‐ranging adult female polar bear was 2.1 kg/day on diets consumed during years with high survival but rose to 3.0 kg/day when survival was low. Although bears that summered onshore in the Alaskan Beaufort Sea had higher‐fat diets than bears that summered on the pack ice, access to the remains of subsistence‐harvested bowhead whales (Balaena mysticetus) contributed little to improving diet energy density. Because most bears in this region remain with the sea ice year round, prey switching and consumption of whale carcasses onshore appear insufficient to augment diets when availability of their primary prey, ringed seals, is reduced. Our results show that a strong predator–prey relationship between polar bears and ringed seals continues in the Beaufort Sea. The method of estimating dietary blubber using predator hair, demonstrated here, provides a new metric to monitor predator–prey relationships that affect individual health and population demographics.

     
    more » « less
  5. Abstract

    As a consequence of ongoing climate change, heatwaves are predicted to increase in frequency, intensity, and duration in many regions. Such extreme events can shift organisms from thermal optima for physiology and behaviour, with the thermal stress hypothesis predicting reduced performance at temperatures where the maintenance of biological functions is energetically costly. Performance includes the ability to resist biotic stressors, including infectious diseases, with increased exposure to extreme temperatures having the potential to synergise with parasite infection.

    Climate change is a proposed threat to native bee pollinators, directly and through indirect effects on floral resources, but the thermal stress hypothesis, particularly pertaining to infectious disease resistance, has received limited attention. We exposed adultBombus impatiensbumblebee workers to simulated, ecologically relevant heatwave or control thermal regimes and assessed longevity, immunity, and resistance to concurrent or future parasite infections.

    We demonstrate that survival and induced antibacterial immunity are reduced following heatwaves. Supporting that heatwave exposure compromised immunity, the cost of immune activation was thermal regime dependent, with survival costs in control but not heatwave exposed bees. However, in the face of real infections, an inability to mount an optimal immune response will be detrimental, which was reflected by increased trypanosomatid parasite infections following heatwave exposure.

    These results demonstrate interactions between heatwave exposure and bumblebee performance, including immune and infection outcomes. Thus, the health of bumblebee pollinator populations may be affected through altered interactions with parasites and pathogens, in addition to other effects of extreme manifestations of climate change.

     
    more » « less