skip to main content


Title: Coevolution of Extreme Sea Levels and Sea‐Level Rise Under Global Warming
Abstract

Design of coastal defense structures like seawalls and breakwaters can no longer be based on stationarity assumption. In many parts of the world, an anticipated sea‐level rise (SLR) due to climate change will constitute present‐day extreme sea levels inappropriate for future coastal flood risk assessments since it will significantly increase their probability of occurrence. Here, we first show that global annual maxima sea levels (AMSLs) have been increasing in magnitude over the last decades, primarily due to a positive shift in mean sea level (MSL). Then, we apply non‐stationary extreme value theory to model the extremal behavior of sea levels with MSL as a covariate and quantify the evolution of AMSLs in the following decades using revised probabilistic sea‐level rise projections. Our analysis reveals that non‐stationary distributions exhibit distinct differences compared to simply considering stationary conditions with a change in location parameter equal to the amount of MSL rise. With the use of non‐stationary distributions, we show that by the year 2050 many locations will experience their present‐day 100‐yr return level as an event with return period less than 15 and 9 years under the moderate (RCP4.5) and high (RCP8.5) representative concentration pathways. Also, we find that by the end of this century almost all locations examined will encounter their current 100‐yr return level on an annual basis, even if CO2concentration is kept at moderate levels (RCP4.5). Our assessment accounts for large uncertainty by incorporating ambiguities in both SLR projections and non‐stationary extreme value distribution parameters via a Monte Carlo simulation.

 
more » « less
Award ID(s):
2223893
NSF-PAR ID:
10442140
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
11
Issue:
7
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Sea level rise (SLR) and tropical cyclone (TC) climatology change could impact future flood hazards in Jamaica Bay—an urbanized back-barrier bay in New York—yet their compound impacts are not well understood. This study estimates the compound effects of SLR and TC climatology change on flood hazards in Jamaica Bay from a historical period in the late twentieth century (1980–2000) to future periods in the mid- and late-twenty-first century (2030–2050 and 2080–2100, under RCP8.5 greenhouse gas concentration scenario). Flood return periods are estimated based on probabilistic projections of SLR and peak storm tides simulated by a hydrodynamic model for large numbers of synthetic TCs. We find a substantial increase in the future flood hazards, e.g., the historical 100-year flood level would become a 9- and 1-year flood level in the mid- and late-twenty-first century and the 500-year flood level would become a 143- and 4-year flood level. These increases are mainly induced by SLR. However, TC climatology change would considerably contribute to the future increase in low-probability, high-consequence flood levels (with a return period greater than 100 year), likely due to an increase in the probability of occurrence of slow-moving but intense TCs by the end of twenty-first century. We further conduct high-resolution coastal flood simulations for a series of SLR and TC scenarios. Due to the SLR projected with a 5% exceedance probability, 125- and 1300-year flood events in the late-twentieth century would become 74- and 515-year flood events, respectively, in the late-twenty-first century, and the spatial extent of flooding over coastal floodplains of Jamaica Bay would increase by nearly 10 and 4 times, respectively. In addition, SLR leads to larger surface waves induced by TCs in the bay, suggesting a potential increase in hazards associated with wave runup, erosion, and damage to coastal infrastructure. 
    more » « less
  2. Abstract

    Climate change is raising sea levels across the globe. On river deltas, sea‐level rise (SLR) may result in land loss, saline intrusion into groundwater aquifers, and other problems that adversely impact coastal communities. There is significant uncertainty surrounding future SLR trajectories and magnitudes, even over decadal timescales. Given this uncertainty, numerical modeling is needed to explore how different SLR projections may impact river delta evolution. In this work, we apply the pyDeltaRCM numerical model to simulate 350 years of deltaic evolution under three different SLR trajectories: steady rise, an abrupt change in SLR rate, and a gradual acceleration of SLR. For each SLR trajectory, we test a set of six final SLR magnitudes between 5 and 40 mm/yr, in addition to control runs with no SLR. We find that both surface channel dynamics as well as aspects of the subsurface change in response to higher rates of SLR, even over centennial timescales. In particular, increased channel mobility due to SLR corresponds to higher sand connectivity in the subsurface. Both the trajectory and magnitude of SLR change influence the evolution of the delta surface, which in turn modifies the structure of the subsurface. We identify correlations between surface and subsurface properties, and find that inferences of subsurface structure from the current surface configuration should be limited to time spans over which the sea level forcing is approximately steady. As a result, this work improves our ability to predict future delta evolution and subsurface connectivity as sea levels continue to rise.

     
    more » « less
  3. Abstract

    Two tropical cyclones (TCs) that make landfall close together can induce sequential hazards to coastal areas. Here we investigate the change in sequential TC hazards in the historical and future projected climates. We find that the chance of sequential TC hazards has been increasing over the past several decades at many US locations. Under the high (moderate) emission scenario, the chance of hazards from two TCs impacting the same location within 15 days may substantially increase, with the return period decreasing over the century from 10–92 years to ~1–2 (1–3) years along the US East and Gulf coasts, due to sea-level rise and storm climatology change. Climate change can also cause unprecedented compounding of extreme hazards at the regional level. A Katrina-like TC and a Harvey-like TC impacting the United States within 15 days of each other, which is non-existent in the control simulation for over 1,000 years, is projected to have an annual occurrence probability of more than 1% by the end of the century under the high emission scenario.

     
    more » « less
  4. Abstract

    Ocean dynamic sea level (DSL) change is a key driver of relative sea level (RSL) change. Projections of DSL change are generally obtained from simulations using atmosphere‐ocean general circulation models (GCMs). Here, we develop a two‐layer climate emulator to interpolate between emission scenarios simulated with GCMs and extend projections beyond the time horizon of available simulations. This emulator captures the evolution of DSL changes in corresponding GCMs, especially over middle and low latitudes. Compared with an emulator using univariate pattern scaling, the two‐layer emulator more accurately reflects GCM behavior and captures non‐linearities and non‐stationarity in the relationship between DSL and global‐mean warming, with a reduction in global‐averaged error during 2271–2290 of 36%, 24%, and 34% in RCP2.6, RCP4.5, and RCP8.5, respectively. Using the emulator, we develop a probabilistic ensemble of DSL projections through 2300 for four scenarios: Representative Concentration Pathway (RCP) 2.6, RCP 4.5, RCP 8.5, and Shared Socioeconomic Pathway (SSP) 3–7.0. The magnitude and uncertainty of projected DSL changes decrease from the high‐to the low‐emission scenarios, indicating a reduced DSL rise hazard in low‐ and moderate‐emission scenarios (RCP2.6 and RCP4.5) compared to the high‐emission scenarios (SSP3‐7.0 and RCP8.5).

     
    more » « less
  5. Abstract

    Future coastal flood hazard at many locations will be impacted by both tropical cyclone (TC) change and relative sea‐level rise (SLR). Despite sea level and TC activity being influenced by common thermodynamic and dynamic climate variables, their future changes are generally considered independently. Here, we investigate correlations between SLR and TC change derived from simulations of 26 Coupled Model Intercomparison Project Phase 6 models. We first explore correlations between SLR and TC activity by inference from two large‐scale factors known to modulate TC activity: potential intensity (PI) and vertical wind shear. Under the high emissions SSP5‐8.5, SLR is strongly correlated with PI change (positively) and vertical wind shear change (negatively) over much of the western North Atlantic and North West Pacific, with global mean surface air temperature (GSAT) modulating the co‐variability. To explore the impact of the joint changes on flood hazard, we conduct climatological–hydrodynamic modeling at five sites along the US East and Gulf Coasts. Positive correlations between SLR and TC change alter flood hazard projections, particularly at Wilmington, Charleston and New Orleans. For example, if positive correlations between SLR and TC changes are ignored in estimating flood hazard at Wilmington, the average projected change to the historical 100 years storm tide event is under‐estimated by 12%. Our results suggest that flood hazard assessments that neglect the joint influence of these factors and that do not reflect the full distribution of GSAT change may not accurately represent future flood hazard.

     
    more » « less