skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Increasing sequential tropical cyclone hazards along the US East and Gulf coasts
Abstract Two tropical cyclones (TCs) that make landfall close together can induce sequential hazards to coastal areas. Here we investigate the change in sequential TC hazards in the historical and future projected climates. We find that the chance of sequential TC hazards has been increasing over the past several decades at many US locations. Under the high (moderate) emission scenario, the chance of hazards from two TCs impacting the same location within 15 days may substantially increase, with the return period decreasing over the century from 10–92 years to ~1–2 (1–3) years along the US East and Gulf coasts, due to sea-level rise and storm climatology change. Climate change can also cause unprecedented compounding of extreme hazards at the regional level. A Katrina-like TC and a Harvey-like TC impacting the United States within 15 days of each other, which is non-existent in the control simulation for over 1,000 years, is projected to have an annual occurrence probability of more than 1% by the end of the century under the high emission scenario.  more » « less
Award ID(s):
2103754
PAR ID:
10399166
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Climate Change
Volume:
13
Issue:
3
ISSN:
1758-678X
Page Range / eLocation ID:
p. 258-265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Sea level rise (SLR) and tropical cyclone (TC) climatology change could impact future flood hazards in Jamaica Bay—an urbanized back-barrier bay in New York—yet their compound impacts are not well understood. This study estimates the compound effects of SLR and TC climatology change on flood hazards in Jamaica Bay from a historical period in the late twentieth century (1980–2000) to future periods in the mid- and late-twenty-first century (2030–2050 and 2080–2100, under RCP8.5 greenhouse gas concentration scenario). Flood return periods are estimated based on probabilistic projections of SLR and peak storm tides simulated by a hydrodynamic model for large numbers of synthetic TCs. We find a substantial increase in the future flood hazards, e.g., the historical 100-year flood level would become a 9- and 1-year flood level in the mid- and late-twenty-first century and the 500-year flood level would become a 143- and 4-year flood level. These increases are mainly induced by SLR. However, TC climatology change would considerably contribute to the future increase in low-probability, high-consequence flood levels (with a return period greater than 100 year), likely due to an increase in the probability of occurrence of slow-moving but intense TCs by the end of twenty-first century. We further conduct high-resolution coastal flood simulations for a series of SLR and TC scenarios. Due to the SLR projected with a 5% exceedance probability, 125- and 1300-year flood events in the late-twentieth century would become 74- and 515-year flood events, respectively, in the late-twenty-first century, and the spatial extent of flooding over coastal floodplains of Jamaica Bay would increase by nearly 10 and 4 times, respectively. In addition, SLR leads to larger surface waves induced by TCs in the bay, suggesting a potential increase in hazards associated with wave runup, erosion, and damage to coastal infrastructure. 
    more » « less
  2. Abstract Tropical cyclone (TC) hazards coupled with dense urban development along the coastline have resulted in trillions in US damages over the past several decades, with an increasing trend in losses in recent years. So far, this trend has been driven by increasing coastal development. However, as the climate continues to warm, changing TC climatology may also cause large changes in coastal damages in the future. Approaches to quantifying regional TC risk typically focus on total storm damage. However, it is crucial to understand the spatial footprint of TC damage and ultimately the spatial distribution of TC risk. Here, we quantify the magnitude and spatial pattern of TC risk (in expected annual damage) across the US from wind, storm surge, and rainfall using synthetic TCs, physics-based hazard models, and a county-level statistical damage model trained on historical TC data. We then combine end-of-century TC hazard simulations with US population growth and wealth increase scenarios (under the SSP2 4.5 emission scenario) to investigate the sensitivity of changes in TC risk across the US Atlantic and Gulf coasts. We find that not directly accounting for the effects of rainfall and storm surge results in much lower risk estimates and smaller future increases in risk. TC climatology change and socioeconomic change drive similar magnitude increases in total expected annual damage across the US (roughly 160%), and that their combined effect (633% increase) is much higher. 
    more » « less
  3. Tropical cyclone (TC) winds control design wind speeds for much of the eastern United States. Those winds are likely to intensify with climate change, but climate change was not considered in the ASCE 7-22 design wind speed maps, potentially causing many structures to be designed with unacceptably high levels of risk. In this study, we investigate (1) the increases in design wind speed due to climate change; and (2) the resulting risk to structures if climate change is not considered. We estimated the design wind speeds for US counties affected by TCs along the Gulf and Atlantic coasts using nonstationary methods based on a set of synthetic TCs (1,000–1,500 year simulations) downscaled from the latest global climate projections (CMIP6) for the high-emissions scenario (SSP5-8.5). It was found that over the 21st century, 50-year return period winds would increase by an average of around 10% along the US Gulf and Atlantic coasts. Depending on the risk category, design lifetime, and year of construction, design wind speeds (targeting lifetime exceedance probability) are projected to increase by an average of 3%–6% for all counties studied and 6%–15% for coastal counties. For Risk Category II–IV structures, depending on the design lifetime and year of construction, 8%–36% of all counties studied and 25%–66% of coastal counties would experience projected lifetime exceedance probabilities that were at least two risk categories too low; for example, in up to 26% of all counties studied and 54% of coastal counties, a Risk Category III structure would be effectively designed as Risk Category I or lower. 
    more » « less
  4. Abstract In this study, the potential changes in tropical cyclone (TC) lifetime in the western North Pacific basin are examined for different future climates. Using homogeneous 9-km-resolution dynamical downscaling with the Weather Research and Forecasting (WRF) Model, we show that TC-averaged lifetime displays insignificant change under both low and high greenhouse gas concentration scenarios. However, more noticeable changes in the tails of TC lifetime statistics are captured in our downscaling simulations, with more frequent long-lived TCs (lifetime of 8–11 days) and less short-lived TCs (lifetime of 3–5 days). Unlike present-day simulations, it is found that the correlation between TC lifetime and the Niño index is relatively weak and insignificant in all future downscaling simulations, thus offering little explanation for these changes in TC lifetime statistics based on El Niño–Southern Oscillation. More detailed analyses of TC track distribution in the western North Pacific basin reveal, nevertheless, a noticeable shift of TC track patterns toward the end of the twenty-first century. Such a change in TC track climatology results in an overall longer duration of TCs over the open ocean, which is consistent across future scenarios and periods examined in this study. This shift in the TC track pattern is ultimately linked to changes in the western North Pacific subtropical high, which retreats to the south during July and to the east during August–September. The results obtained in this study provide new insights into how large-scale circulations can affect TC lifetime in the western North Pacific basin in warmer climates. Significance StatementUsing high-resolution dynamical downscaling with the Weather Research and Forecasting (WRF) Model under low- and high-emission scenarios, this study shows that the basin-averaged tropical cyclone (TC) lifetime in the western North Pacific (WNP) basin has no noticeable change under both warmer climate scenarios, despite an overall increase in TC maximum intensity. However, the tails of the TC lifetime distribution display significant changes, with more long-lived (6–20 days) TCs but less short-lived (3–5 days) TCs in the future. These changes in TC lifetime statistics are caused by the shift of the North Pacific subtropical high, which alters large-scale steering flows and TC track patterns. These results help explain why previous studies on TC lifetime projections have been inconclusive in the WNP basin and provide new insights into how large-scale circulations can modulate TC lifetime in a warmer climate. 
    more » « less
  5. Abstract Tropical cyclones (TCs) are drivers of extreme rainfall and surge, but the current and future TC rainfall–surge joint hazard has not been well quantified. Using a physics-based approach to simulate TC rainfall and storm tides, we show drastic increases in the joint hazard from historical to projected future (SSP5–8.5) conditions. The frequency of joint extreme events (exceeding both hazards’ historical 100-year levels) may increase by 7–36-fold in the southern US and 30–195-fold in the Northeast by 2100. This increase in joint hazard is induced by sea-level rise and TC climatology change; the relative contribution of TC climatology change is higher than that of sea-level rise for 96% of the coast, largely due to rainfall increases. Increasing storm intensity and decreasing translation speed are the main TC change factors that cause higher rainfall and storm tides and up to 25% increase in their dependence. 
    more » « less