Abstract BackgroundWhile mesenchymal stromal cell (MSC) therapies show promise for treating several indications due to their regenerative and immunomodulatory capacity, clinical translation has yet to be achieved due to a lack of robust, scalable manufacturing practices. Expansion using undefined fetal bovine serum (FBS) or human platelet lysate contributes to MSC functional heterogeneity and limits control of product quality. The need for tunable and consistent media has thus motivated development of chemically defined media (CDM). However, CDM development strategies are often limited in their screening approaches and unable to reliably assess the impact of media on MSC function, often neglecting high-level interactions of media components such as growth factors. Given that MSC morphology has been shown to predict their immunomodulatory function, we employed a high throughput screening (HTS) approach to elucidate effects of growth factor compositions on MSC phenotype and proliferation in a custom CDM. MethodsHTS of eight growth factors in a chemically defined basal medium (CDBM) was conducted via a two-level, full factorial design using adipose-derived MSCs. Media hits were identified leveraging cell counts and morphological profiles. After validating phenotypic responses to hits across multiple donors, MSCs were cultured over three passages in serum-containing medium (SCM) and CDM hits and assayed for growth and immunomodulatory function. Finally, growth factor concentrations in one hit were further refined, and MSC growth and function was assessed. ResultsOur HTS approach led to the discovery of several CDM formulations that enhanced MSC proliferation and demonstrated wide ranging impacts on MSC immunomodulation. Notably, two hits showed 4X higher growth compared to SCM over 3 passages without compromising immunomodulatory function. Refinement of one CDM hit formulation reduced growth factor concentrations by as much as 90% while maintaining superior growth and similar function to SCM. Altogether, distinct MSC morphological profiles observed from screening were indicative of differential MSC quality that allowed for development of an effective CDM for MSC expansion. ConclusionsOverall, this highlights how our HTS approach led to the development of CDM formulations for robust MSC expansion and serves as a generalizable tool for improvement of MSC manufacturing processes.
more »
« less
Development of a Robust Consensus Modeling Approach for Identifying Cellular and Media Metabolites Predictive of Mesenchymal Stromal Cell Potency
Abstract Mesenchymal stromal cells (MSCs) have shown promise in regenerative medicine applications due in part to their ability to modulate immune cells. However, MSCs demonstrate significant functional heterogeneity in terms of their immunomodulatory function because of differences in MSC donor/tissue source, as well as non-standardized manufacturing approaches. As MSC metabolism plays a critical role in their ability to expand to therapeutic numbers ex vivo, we comprehensively profiled intracellular and extracellular metabolites throughout the expansion process to identify predictors of immunomodulatory function (T-cell modulation and indoleamine-2,3-dehydrogenase (IDO) activity). Here, we profiled media metabolites in a non-destructive manner through daily sampling and nuclear magnetic resonance (NMR), as well as MSC intracellular metabolites at the end of expansion using mass spectrometry (MS). Using a robust consensus machine learning approach, we were able to identify panels of metabolites predictive of MSC immunomodulatory function for 10 independent MSC lines. This approach consisted of identifying metabolites in 2 or more machine learning models and then building consensus models based on these consensus metabolite panels. Consensus intracellular metabolites with high predictive value included multiple lipid classes (such as phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins) while consensus media metabolites included proline, phenylalanine, and pyruvate. Pathway enrichment identified metabolic pathways significantly associated with MSC function such as sphingolipid signaling and metabolism, arginine and proline metabolism, and autophagy. Overall, this work establishes a generalizable framework for identifying consensus predictive metabolites that predict MSC function, as well as guiding future MSC manufacturing efforts through identification of high-potency MSC lines and metabolic engineering.
more »
« less
- Award ID(s):
- 1648035
- PAR ID:
- 10442153
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Stem Cells
- Volume:
- 41
- Issue:
- 8
- ISSN:
- 1066-5099
- Format(s):
- Medium: X Size: p. 792-808
- Size(s):
- p. 792-808
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Protein homeostasis is critical for cellular function, as loss of homeostasis is attributed to aging and the accumulation of unwanted proteins. Human mesenchymal stem cells (MSCs) have shown promising therapeutic potential due to their impressive abilities to secrete inflammatory modulators, angiogenic, and regenerative cytokines. However, there exists the problem of human MSC expansion with compromised therapeutic quality. Duringin vitro expansion, human MSCs are plated on stiff plastics and undergo culture adaptation, which results in aberrant proliferation, shifts in metabolism, and decreased autophagic activity. It has previously been shown that three‐dimensional (3D) aggregation can reverse some of these alterations by heightening autophagy and recovering the metabolic state back to a naïve phenotype. To further understand the proteostasis in human MSC culture, this study investigated the effects of 3D aggregation on the human MSC proteome to determine the specific pathways altered by aggregation. The 3D aggregates and 2D cultures of human MSCs derived from bone marrow (bMSC) and adipose tissue (ASC) were analyzed along with differentiated human dermal fibroblasts (FB). The proteomics analysis showed the elevated eukaryotic initiation factor 2 pathway and the upregulated activity of the integrated stress response (ISR) in 3D aggregates. Specific protein quantification further determined that bMSC and ASC responded to ISR, while FB did not. 3D aggregation significantly increased the ischemic survival of bMSCs and ASCs. Perturbation of ISR with small molecules salubrinal and GSK2606414 resulted in differential responses of bMSC, ASC, and FB. This study indicates that aggregation‐based preconditioning culture holds the potential for improving the therapeutic efficacy of expanded human MSCs via the establishment of ISR and homeostasis.more » « less
-
Combination of stem cell technology and 3D biofabrication approaches provides physiological similarity to in vivo tissues and the capability of repairing and regenerating damaged human tissues. Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine applications because of their immunosuppressive properties and multipotent potentials. To obtain large amount of high-quality MSCs without patient donation and invasive procedures, we differentiated MSCs from human-induced pluripotent stem cells (hiPSC-MSCs) using serum-free E6 media supplemented with only one growth factor (bFGF) and two small molecules (SB431542 and CHIR99021). The differentiated cells showed a high expression of common MSC-specific surface markers (CD90, CD73, CD105, CD106, CD146, and CD166) and a high potency for osteogenic and chondrogenic differentiation. With these cells, we have been able to manufacture MSC tissue rings with high consistency and robustness in pluronic-coated reusable PDMS devices. The MSC tissue rings were characterized based on inner diameter and outer ring diameter and observed cell-type-dependent tissue contraction induced by cell-matrix interaction. Our approach of simplified hiPSC-MSC differentiation, modular fabrication procedure, and serum-free culture conditions has a great potential for scalable manufacturing of MSC tissue rings for different regenerative medicine applications.more » « less
-
Abstract The clinical translation of mesenchymal stem cells (MSCs) is limited by population heterogeneity and inconsistent responses to engineered signals. Specifically, the extent in which MSCs respond to mechanical cues varies significantly across MSC lines. Although induced pluripotent stem cells (iPSCs) have recently emerged as a novel cell source for creating highly homogeneous MSC (iMSC) lines, cellular mechanosensing of iMSCs on engineered materials with defined mechanics is not well understood. Here, we tested the mechanosensing properties of three human iMSC lines derived from iPSCs generated using a fully automated platform. Stiffness-driven changes in morphology were comparable between MSCs and iMSCs cultured atop hydrogels of different stiffness. However, contrary to tissue derived MSCs, no significant changes in iMSC morphology were observed between iMSC lines atop different stiffness hydrogels, demonstrating a consistent response to mechanical signals. Further, stiffness-driven changes in mechanosensitive biomarkers were more pronounced in iMSCs than MSCs, which shows that iMSCs are more adaptive and responsive to mechanical cues than MSCs. This study reports that iMSCs are a promising stem cell source for basic and applied research due to their homogeneity and high sensitivity to engineered mechanical signals.more » « less
-
Mesenchymal stromal cells (MSCs) have been widely investigated for regenerative medicine applications, from treating various inflammatory diseases as a cell therapy to generating engineered tissue constructs. Numerous studies have evaluated the potential effects of MSCs following therapeutic administration. By responding to their surrounding microenvironment, MSCs may mediate immunomodulatory effects through various mechanisms that directly (i.e., contact-dependent) or indirectly (i.e., paracrine activity) alter the physiology of endogenous cells in various disease pathologies. More specifically, a pivotal crosstalk between MSCs and tissue-resident macrophages and monocytes (TMφ) has been elucidated using in vitro and in vivo preclinical studies. An improved understanding of this crosstalk could help elucidate potential mechanisms of action (MOAs) of therapeutically administered MSCs. TMφ, by nature of their remarkable functional plasticity and prevalence within the body, are uniquely positioned as critical modulators of the immune system – not only in maintaining homeostasis but also during pathogenesis. This has prompted further exploration into the cellular and molecular alterations to TMφ mediated by MSCs. In vitro assays and in vivo preclinical trials have identified key interactions mediated by MSCs that polarize the responses of TMφ from a pro-inflammatory (i.e., classical activation) to a more anti-inflammatory/reparative (i.e., alternative activation) phenotype and function. In this review, we describe physiological and pathological TMφ functions in response to various stimuli and discuss the evidence that suggest specific mechanisms through which MSCs may modulate TMφ phenotypes and functions, including paracrine interactions (e.g., secretome and extracellular vesicles), nanotube-mediated intercellular exchange, bioenergetics, and engulfment by macrophages. Continued efforts to elucidate this pivotal crosstalk may offer an improved understanding of the immunomodulatory capacity of MSCs and inform the development and testing of potential MOAs to support the therapeutic use of MSCs and MSC-derived products in various diseases.more » « less