skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: When does a stream become a river?
Abstract The distinction between a “stream” and “river” is imprecise and vague despite the popular usage of the terms across disciplines for describing flowing waterbodies. Based on an analysis of named flowing waterbodies in the continental United States, we suggest a bank‐to‐bank channel width of 15 m as a working threshold in defining smaller “streams” from larger “rivers.”  more » « less
Award ID(s):
2243001
PAR ID:
10442182
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
River Research and Applications
Volume:
39
Issue:
9
ISSN:
1535-1459
Format(s):
Medium: X Size: p. 1925-1929
Size(s):
p. 1925-1929
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ponds, wetlands, and shallow lakes (collectively “shallow waterbodies”) are among the most biogeochemically active freshwater ecosystems. Measurements of gross primary production (GPP), respiration (R), and net ecosystem production (NEP) are rare in shallow waterbodies compared to larger and deeper lakes, which can bias our understanding of lentic ecosystem processes. In this study, we calculated GPP, R, and NEP in 26 small, shallow waterbodies across temperate North America and Europe. We observed high rates of GPP (mean 8.4 g O2 m−3 d−1) and R (mean −9.1 g O2 m−3 d−1), while NEP varied from net heterotrophic to autotrophic. Metabolism rates were affected by depth and aquatic vegetation cover, and the shallowest waterbodies had the highest GPP, R, and the most variable NEP. The shallow waterbodies from this study had considerably higher metabolism rates compared to deeper lakes, stressing the importance of these systems as highly productive biogeochemical hotspots. 
    more » « less
  2. Abstract Whether permafrost systematically alters the rate of riverbank erosion is a fundamental geomorphic question with significant importance to infrastructure, water quality, and biogeochemistry of high‐latitude watersheds. For over four decades, this question has remained unanswered due to a lack of data. Using remotely sensed imagery, we addressed this knowledge gap by quantifying riverbank erosion rates across the Arctic and subarctic. To compare these rates to non‐permafrost rivers, we assembled a global data set of published riverbank erosion rates. We found that erosion rates in rivers influenced by permafrost are on average nine times lower than non‐permafrost systems; erosion rate differences increase up to 40 times for the largest rivers. To test alternative hypotheses for the observed erosion rate difference, we examined differences in total water yield and erosional efficiency between these rivers and non‐permafrost rivers. Neither of these factors nor differences in river sediment loads provided compelling alternative explanations, leading us to conclude that permafrost limits riverbank erosion rates. This conclusion was supported by field investigations of rates and patterns of erosion along three rivers flowing through discontinuous permafrost in Alaska. Our results show that permafrost limits maximum bank erosion rates on rivers with stream powers greater than 900 Wm−1. On smaller rivers, however, hydrology rather than thaw rate may be the dominant control on bank erosion. Our findings suggest that Arctic warming and hydrological changes should increase bank erosion rates on large rivers but may reduce rates on rivers with drainage areas less than a few thousand km2
    more » « less
  3. Abstract Euphausiids are important prey for many marine organisms and often occur in patchy aggregations. Euphausiid predators, such as blue whales, may become concentrated in the vicinity of these aggregations. We investigated an area called Nine Mile Bank (NMB) near San Diego, California, defined by an area of steep bathymetry, to determine whether the frequent whale sightings in that locality can be explained by the distribution of euphausiids across the bank and by the vertical distribution of euphausiids in the water column.Thysanoessa spinifera, the strongly preferred blue whale prey euphausiid in this area, was consistently more abundant on the bank or inshore of it than offshore. In contrast,Euphausia pacifica,a minor blue whale prey item, was much more abundant and distributed across the study region. Adults of both species were concentrated in a stratum corresponding to the feeding depth of blue whales. Other euphausiids that form a negligible part of the blue whale diet also showed no association with NMB. Both blue whales and their primary prey speciesThysanoessa spiniferawere more abundant on or inshore of the bank than offshore, suggesting that the bank may serve as an offshore limit of high prey abundance that helps to concentrate blue whales. 
    more » « less
  4. Abstract High‐resolution topography reveals that floodplains along meandering rivers in Indiana commonly contain intermittently flowing channel networks. We investigated how the presence of floodplain channels affects lateral surface‐water connectivity between a river and floodplain (specifically exchange flux and timescales of transport) as a function of flow stage in a low‐gradient river‐floodplain system. We constructed a two‐dimensional, surface‐water hydrodynamic model using Hydrologic Engineering Center's River Analysis System (HEC‐RAS) 2D along 32 km of floodplain (56 km along the river) of the East Fork White River near Seymour, Indiana, USA, using lidar elevation data and surveyed river bathymetry. The model was calibrated using land‐cover specific roughness to elevation‐discharge data from a U.S. Geological Survey gage and validated against high‐water marks, an aerial photo showing the spatial extent of floodplain inundation, and measured flow velocities. Using the model results, we analyzed the flow in the river, spatial patterns of inundation, flow pathways, river‐floodplain exchange, and water residence time on the floodplain. Our results highlight that bankfull flow is an oversimplified concept for explaining river‐floodplain connectivity because some stream banks are overtopped and major low‐lying floodplain channels are inundated roughly 19 days per year. As flow increased, inundation of floodplain channels at higher elevations dissected the floodplain, until the floodplain channels became fully inundated. Additionally, we found that river‐floodplain exchange was driven by bank height or channel orientation depending on flow conditions. We propose a conceptual model of river‐floodplain connectivity dynamics and developed metrics to analyze quantitatively complex river‐floodplain systems. 
    more » « less
  5. Abstract Beaver engineering in the Arctic tundra induces hydrologic and geomorphic changes that are favorable to methane (CH4) production. Beaver-mediated methane emissions are driven by inundation of existing vegetation, conversion from lotic to lentic systems, accumulation of organic rich sediments, elevated water tables, anaerobic conditions, and thawing permafrost. Ground-based measurements of CH4emissions from beaver ponds in permafrost landscapes are scarce, but hyperspectral remote sensing data (AVIRIS-NG) permit mapping of ‘hotspots’ thought to represent locations of high CH4emission. We surveyed a 429.5 km2area in Northwestern Alaska using hyperspectral airborne imaging spectroscopy at ∼5 m pixel resolution (14.7 million observations) to examine spatial relationships between CH4hotspots and 118 beaver ponds. AVIRIS-NG CH4hotspots covered 0.539% (2.3 km2) of the study area, and were concentrated within 30 m of waterbodies. Comparing beaver ponds to all non-beaver waterbodies (including waterbodies >450 m from beaver-affected water), we found significantly greater CH4hotspot occurrences around beaver ponds, extending to a distance of 60 m. We found a 51% greater CH4hotspot occurrence ratio around beaver ponds relative to nearby non-beaver waterbodies. Dammed lake outlets showed no significant differences in CH4hotspot ratios compared to non-beaver lakes, likely due to little change in inundation extent. The enhancement in AVIRIS-NG CH4hotspots adjacent to beaver ponds is an example of a new disturbance regime, wrought by an ecosystem engineer, accelerating the effects of climate change in the Arctic. As beavers continue to expand into the Arctic and reshape lowland ecosystems, we expect continued wetland creation, permafrost thaw and alteration of the Arctic carbon cycle, as well as myriad physical and biological changes. 
    more » « less