The 2019 ENRICH Voyage (Euphausiids and Nutrient Recycling in Cetacean Hotspots), was conducted from 19 January – 5 March 2019, aboard the RV Investigator. The voyage departed from and returned to Hobart, Tasma-nia, Australia, and conducted most marine science operations in the area between 60°S – 67°S and 138°E – 152°E. As part of the multidisciplinary research programme, a passive acoustic survey for marine mammals was undertaken for the duration of the voyage, with the main goal to monitor for and locate groups of calling Antarctic blue whales (Balaenoptera musculus intermedia). Directional sonobuoys were used at 295 listening stations, which resulted in 828 hours of acoustic recordings. Monitoring also took place for pygmy blue, (B. m. brevicauda), fin, (B. physalus), sperm (Physeter macrocephalus), humpback (Megaptera novaeangliae), sei (B. borealis), and Antarctic minke whales (B. bonarensis); for leopard (Hydrurga leptonyx), crabeater (Lobodon carcinophaga), Ross (Ommatophoca rossii), and Weddell seals (Leptonychotes weddellii), and for odontocete (low frequency whistles) vocalisations during each listening station. Calibrated measurements of the bearing and intensity of the majority of calls from blue and fin whales were obtained in real time. 33,435 calls from Antarctic blue whales were detected at 238 listening stations throughout the voyage, most of them south of 60°S. Southeast Indian Ocean blue whale song was detected primarily between 47° and 55°S while the southwest Pacific blue whale song was recorded between 44° and 48°S. Most baleen whale and seal calls were detected along the continental shelf break in the study region but some were also detected in deeper waters. Marine mammal calls were uncommon on the shelf, which did not have any ice cover during the survey. Calling Antarctic blue whales were tracked and located on multiple occasions to enable closer study of their fine-scale movements and calling behaviour as well as enabling collection of photo ID, behavioural, and photogrammetry data. The passive acoustic data collected during this voyage will allow investigation of the distribution of Antarctic blue whales in relation to environmental correlates measured during ENRICH, with a focus on blue whale prey.
more »
« less
The euphausiid prey field for blue whales around a steep bathymetric feature in the southern California current system
Abstract Euphausiids are important prey for many marine organisms and often occur in patchy aggregations. Euphausiid predators, such as blue whales, may become concentrated in the vicinity of these aggregations. We investigated an area called Nine Mile Bank (NMB) near San Diego, California, defined by an area of steep bathymetry, to determine whether the frequent whale sightings in that locality can be explained by the distribution of euphausiids across the bank and by the vertical distribution of euphausiids in the water column.Thysanoessa spinifera, the strongly preferred blue whale prey euphausiid in this area, was consistently more abundant on the bank or inshore of it than offshore. In contrast,Euphausia pacifica,a minor blue whale prey item, was much more abundant and distributed across the study region. Adults of both species were concentrated in a stratum corresponding to the feeding depth of blue whales. Other euphausiids that form a negligible part of the blue whale diet also showed no association with NMB. Both blue whales and their primary prey speciesThysanoessa spiniferawere more abundant on or inshore of the bank than offshore, suggesting that the bank may serve as an offshore limit of high prey abundance that helps to concentrate blue whales.
more »
« less
- Award ID(s):
- 1637632
- PAR ID:
- 10078321
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 64
- Issue:
- 1
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- p. 390-405
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ummenhofer, Caroline (Ed.)Changes in gray whale ( Eschrichtius robustus ) phenology and distribution are related to observed and hypothesized prey availability, bottom water temperature, salinity, sea ice persistence, integrated water column and sediment chlorophyll a , and patterns of wind-driven biophysical forcing in the northern Bering and eastern Chukchi seas. This portion of the Pacific Arctic includes four Distributed Biological Observatory (DBO) sampling regions. In the Bering Strait area, passive acoustic data showed marked declines in gray whale calling activity coincident with unprecedented wintertime sea ice loss there in 2017–2019, although some whales were seen there during DBO cruises in those years. In the northern Bering Sea, sightings during DBO cruises show changes in gray whale distribution coincident with a shrinking field of infaunal amphipods, with a significant decrease in prey abundance (r = -0.314, p<0.05) observed in the DBO 2 region over the 2010–2019 period. In the eastern Chukchi Sea, sightings during broad scale aerial surveys show that gray whale distribution is associated with localized areas of high infaunal crustacean abundance. Although infaunal crustacean prey abundance was unchanged in DBO regions 3, 4 and 5, a mid-decade shift in gray whale distribution corresponded to both: (i) a localized increase in infaunal prey abundance in DBO regions 4 and 5, and (ii) a correlation of whale relative abundance with wind patterns that can influence epi-benthic and pelagic prey availability. Specifically, in the northeastern Chukchi Sea, increased sighting rates (whales/km) associated with an ~110 km (60 nm) offshore shift in distribution was positively correlated with large scale and local wind patterns conducive to increased availability of krill. In the southern Chukchi Sea, gray whale distribution clustered in all years near an amphipod-krill ‘hotspot’ associated with a 50-60m deep trough. We discuss potential impacts of observed and inferred prey shifts on gray whale nutrition in the context of an ongoing unusual gray whale mortality event. To conclude, we use the conceptual Arctic Marine Pulses (AMP) model to frame hypotheses that may guide future research on whales in the Pacific Arctic marine ecosystem.more » « less
-
Abstract Southern hemisphere blue (Balaenoptera musculus intermedia) and fin (Balaenoptera physalus) whales are the largest predators in the Southern Ocean, with similarities in morphology and distribution. Yet, understanding of their life history and foraging is limited due to current low abundances and limited ecological data. To address these gaps, historic Antarctic blue (n = 5) and fin (n = 5) whale baleen plates, collected in 1947–1948 and recently rediscovered in the Smithsonian National Museum of Natural History, were analyzed for bulk (δ13C and δ15N) stable isotopes. Regular oscillations in isotopic ratios, interpreted as annual cycles, revealed that baleen plates contain approximately 6 years (14.35 ± 1.20 cm year−1) of life history data in blue whales and 4 years (16.52 ± 1.86 cm year−1) in fin whales. Isotopic results suggest that: (1) while in the Southern Ocean, blue and fin whales likely fed at the same trophic level but demonstrated niche differentiation; (2) fin whales appear to have had more regular annual migrations; and (3) fin whales may have migrated to ecologically distinct sub‐Antarctic waters annually while some blue whales may have resided year‐round in the Southern Ocean. These results reveal differences in ecological niche and life history strategies between Antarctic blue and fin whales during a time period when their populations were more abundant than today, and before major human‐driven climatic changes occurred in the Southern Ocean.more » « less
-
Abstract Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata) and North Atlantic right whales (NARW;Eubalaena glacialis). This study assesses the acoustic presence of humpback (Megaptera novaeangliae), sei (B. borealis), fin (B. physalus), and blue whales (B. musculus) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.more » « less
-
Halliday, William David (Ed.)Among tremendous biodiversity within the California Current Ecosystem (CCE) are gigantic mysticetes (baleen whales) that produce structured sequences of sound described as song. From six years of passive acoustic monitoring within the central CCE we measured seasonal and interannual variations in the occurrence of blue (Balaenoptera musculus), fin (Balaenoptera physalus), and humpback (Megaptera novaeangliae) whale song. Song detection during 11 months of the year defines its prevalence in this foraging habitat and its potential use in behavioral ecology research. Large interannual changes in song occurrence within and between species motivates examination of causality. Humpback whales uniquely exhibited continuous interannual increases, rising from 34% to 76% of days over six years, and we examine multiple hypotheses to explain this exceptional trend. Potential influences of physical factors on detectability – including masking and acoustic propagation – were not supported by analysis of wind data or modeling of acoustic transmission loss. Potential influences of changes in local population abundance, site fidelity, or migration timing were supported for two of the interannual increases in song detection, based on extensive local photo ID data (17,356 IDs of 2,407 individuals). Potential influences of changes in foraging ecology and efficiency were supported across all years by analyses of the abundance and composition of forage species. Following detrimental food web impacts of a major marine heatwave that peaked during the first year of the study, foraging conditions consistently improved for humpback whales in the context of their exceptional prey-switching capacity. Stable isotope data from humpback and blue whale biopsy samples are consistent with observed interannual variations in the regional abundance and composition of forage species. This study thus indicates that major interannual changes in detection of baleen whale song may reflect underlying variations in forage species availability driven by energetic variations in ecosystem state.more » « less