Despite the groundbreaking advancements in the synthesis of inorganic lead halide perovskite (LHP) nanocrystals (NCs), stimulated from their intriguing size‐, composition‐, and morphology‐dependent optical and optoelectronic properties, their formation mechanism through the hot‐injection (HI) synthetic route is not well‐understood. In this work, for the first time, in‐flow HI synthesis of cesium lead iodide (CsPbI3) NCs is introduced and a comprehensive understanding of the interdependent competing reaction parameters controlling the NC morphology (nanocube vs nanoplatelet) and properties is provided. Utilizing the developed flow synthesis strategy, a change in the CsPbI3NC formation mechanism at temperatures higher than 150 °C, resulting in different CsPbI3morphologies is revealed. Through comparison of the flow‐ versus flask‐based synthesis, deficiencies of batch reactors in reproducible and scalable synthesis of CsPbI3NCs with fast formation kinetics are demonstrated. The developed modular flow chemistry route provides a new frontier for high‐temperature studies of solution‐processed LHP NCs and enables their consistent and reliable continuous nanomanufacturing for next‐generation energy technologies.
Mechanistic studies of the morphology of lead halide perovskite nanocrystals (LHP‐NCs) are hampered by a lack of generalizable suitable synthetic strategies and ligand systems. Here, the synthesis of zwitterionic CsPbBr3NCs is presented with controlled anisotropy using a proposed “surface‐selective ligand pairs” strategy. Such a strategy provides a platform to systematically study the binding affinity of capping ligand pairs and the resulting LHP morphologies. By using zwitterionic ligands (ZwL) with varying structures, majority ZwL‐capped LHP NCs with controlled morphology are obtained, including anisotropic nanoplatelets and nanorods, for the first time. Combining experiments with density functional theory calculations, factors that govern the ligand binding on the different surface facets of LHP‐NCs are revealed, including the steric bulkiness of the ligand, the number of binding sites, and the charge distance between binding moieties. This study provides guidance for the further exploration of anisotropic LHP‐NCs.
more » « less- PAR ID:
- 10442224
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 35
- Issue:
- 39
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Lead halide perovskite (LHP) nanocrystals (NCs) have recently garnered enhanced development efforts from research disciplines owing to their superior optical and optoelectronic properties. These materials, however, are unlike conventional quantum dots, because they possess strong ionic character, labile ligand coverage, and overall stability issues. As a result, the system as a whole is highly dynamic and can be affected by slight changes of particle surface environment. Specifically, the surface ligand shell of LHP NCs has proven to play imperative roles throughout the lifetime of a LHP NC. Recent advances in engineering and understanding the roles of surface ligand shells from initial synthesis, through postsynthetic processing and device integration, finally to application performances of colloidal LHP NCs are covered here.
-
Lead halide perovskite (LHP) nanocrystals (NCs) are considered an emerging class of advanced functional materials with numerous outstanding optoelectronic characteristics. Despite their success in the field, their precision synthesis and fundamental mechanistic studies remain a challenge. The vast colloidal synthesis and processing parameters of LHP NCs in combination with the batch‐to‐batch and lab‐to‐lab variation problems further complicate their progress. In response, a self‐driving fluidic micro‐processor is presented for accelerated navigation through the complex synthesis and processing parameter space of NCs with multistage chemistries. The capability of the developed autonomous experimentation strategy is demonstrated for a time‐, material‐, and labor‐efficient search through the sequential halide exchange and cation doping reactions of LHP NCs. Next, a machine learning model of the modular fluidic micro‐processors is autonomously built for accelerated fundamental studies of the in‐flow metal cation doping of LHP NCs. The surrogate model of the sequential halide exchange and cation doping reactions of LHP NCs is then utilized for five closed‐loop synthesis campaigns with different target NC doping levels. The precise and intelligent NC synthesis and processing strategy, presented herein, can be further applied toward the autonomous discovery and development of novel impurity‐doped NCs with applications in next‐generation energy technologies.
-
Abstract We present a one‐pot colloidal synthesis method for producing monodisperse multi‐metal (Co, Mn, and Fe) spinel nanocrystals (NCs), including nanocubes, nano‐octahedra, and concave nanocubes. This study explores the mechanism of morphology control, showcasing the pivotal roles of metal precursors and capping ligands in determining the exposed crystal planes on the NC surface. The cubic spinel NCs, terminated with exclusive {100}‐facets, demonstrate superior electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media compared to their octahedral and concave cubic counterparts. Specifically, at 0.85 V, (CoMn)Fe2O4spinel oxide nanocubes achieve a high mass activity of 23.9 A/g and exhibit excellent stability, highlighting the promising ORR performance associated with {100}‐facets of multi‐metal spinel oxides over other low‐index and high‐index facets. Motivated by exploring the correlation between ORR performance and surface atom arrangement (active sites), surface element composition, as well as other factors, this study introduces a prospective approach for shape‐controlled synthesis of advanced spinel oxide NCs. It underscores the significance of catalyst shape control and suggests potential applications as nonprecious metal ORR electrocatalysts.
-
Abstract Chirality is ubiquitous in nature and occurs at all length scales. The development of applications for chiral nanostructures is rising rapidly. With the recent achievements of atomically precise nanochemistry, total structures of ligand‐protected Au and other metal nanoclusters (NCs) are successfully obtained, and the origins of chirality are discovered to be associated with different parts of the cluster, including the surface ligands (e.g., swirl patterns), the organic–inorganic interface (e.g., helical stripes), and the kernel. Herein, a unified picture of metal–ligand surface bonding‐induced chirality for the nanoclusters is proposed. The different bonding modes of M–X (where M = metal and X = the binding atom of ligand) lead to different surface structures on nanoclusters, which in turn give rise to various characteristic features of chirality. A comparison of Au–thiolate NCs with Au–phosphine ones further reveals the important roles of surface bonding. Compared to the Au–thiolate NCs, the Ag/Cu/Cd–thiolate systems exhibit different coordination modes between the metal and the thiolate. Other than thiolate and phosphine ligands, alkynyls are also briefly discussed. Several methods of obtaining chiroptically active nanoclusters are introduced, such as enantioseparation by high‐performance liquid chromatography and enantioselective synthesis. Future perspectives on chiral NCs are also proposed.