skip to main content


Title: Identification of preferred multimodal ligand‐binding regions on IgG1 F C using nuclear magnetic resonance and molecular dynamics simulations
Abstract

In this study, the binding of multimodal chromatographic ligands to the IgG1 FCdomain were studied using nuclear magnetic resonance and molecular dynamics simulations. Nuclear magnetic resonance experiments carried out with chromatographic ligands and a perdeuterated15N‐labeled FCdomain indicated that while single‐mode ion exchange ligands interacted very weakly throughout the FCsurface, multimodal ligands containing negatively charged and aromatic moieties interacted with specific clusters of residues with relatively high affinity, forming distinct binding regions on the FC. The multimodal ligand‐binding sites on the FCwere concentrated in the hinge region and near the interface of the CH2 and CH3 domains. Furthermore, the multimodal binding sites were primarily composed of positively charged, polar, and aliphatic residues in these regions, with histidine residues exhibiting some of the strongest binding affinities with the multimodal ligand. Interestingly, comparison of protein surface property data with ligand interaction sites indicated that the patch analysis on FCcorroborated molecular‐level binding information obtained from the nuclear magnetic resonance experiments. Finally, molecular dynamics simulation results were shown to be qualitatively consistent with the nuclear magnetic resonance results and to provide further insights into the binding mechanisms. An important contribution to multimodal ligand‐FCbinding in these preferred regions was shown to be electrostatic interactions and π–π stacking of surface‐exposed histidines with the ligands. This combined biophysical and simulation approach has provided a deeper molecular‐level understanding of multimodal ligand–FCinteractions and sets the stage for future analyses of even more complex biotherapeutics.

 
more » « less
Award ID(s):
1704745
NSF-PAR ID:
10452827
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
118
Issue:
2
ISSN:
0006-3592
Page Range / eLocation ID:
p. 809-822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Disabled-2 (Dab2) is an adaptor protein that regulates the extent of platelet aggregation by two mechanisms. In the first mechanism, Dab2 intracellularly downregulates the integrin αIIbβ3receptor, converting it to a low affinity state for adhesion and aggregation processes. In the second mechanism, Dab2 is released extracellularly and interacts with the pro-aggregatory mediators, the integrin αIIbβ3receptor and sulfatides, blocking their association to fibrinogen and P-selectin, respectively. Our previous research indicated that a 35-amino acid region within Dab2, which we refer to as the sulfatide-binding peptide (SBP), contains two potential sulfatide-binding motifs represented by two consecutive polybasic regions. Using molecular docking, nuclear magnetic resonance, lipid-binding assays, and surface plasmon resonance, this work identifies the critical Dab2 residues within SBP that are responsible for sulfatide binding. Molecular docking suggested that a hydrophilic region, primarily mediated by R42, is responsible for interaction with the sulfatide headgroup, whereas the C-terminal polybasic region contributes to interactions with acyl chains. Furthermore, we demonstrated that, in Dab2 SBP, R42 significantly contributes to the inhibition of platelet P-selectin surface expression. The Dab2 SBP residues that interact with sulfatides resemble those described for sphingolipid-binding in other proteins, suggesting that sulfatide-binding proteins share common binding mechanisms.

     
    more » « less
  2. Abstract

    Shuttle protein UBQLN2 functions in protein quality control (PQC) by binding to proteasomal receptors and ubiquitinated substrates via its N‐terminal ubiquitin‐like (UBL) and C‐terminal ubiquitin‐associated (UBA) domains, respectively. Between these two folded domains are low‐complexity STI1‐I and STI1‐II regions, connected by disordered linkers. The STI1 regions bind other components, such as HSP70, that are important to the PQC functions of UBQLN2. We recently determined that the STI1‐II region enables UBQLN2 to undergo liquid–liquid phase separation (LLPS) to form liquid droplets in vitro and biomolecular condensates in cells. However, how the interplay between the folded (UBL/UBA) domains and the intrinsically disordered regions mediates phase separation is largely unknown. Using engineered domain deletion constructs, we found that removing the UBA domain inhibits UBQLN2 LLPS while removing the UBL domain enhances LLPS, suggesting that UBA and UBL domains contribute asymmetrically in modulating UBQLN2 LLPS. To explain these differential effects, we interrogated the interactions that involve the UBA and UBL domains across the entire UBQLN2 molecule using nuclear magnetic resonance spectroscopy. To our surprise, aside from well‐studied canonical UBL:UBA interactions, there also exist moderate interactions between the UBL and several disordered regions, including STI1‐I and residues 555–570, the latter of which is a known contributor to UBQLN2 LLPS. Our findings are essential for the understanding of both the molecular driving forces of UBQLN2 LLPS and the effects of ligand binding to UBL, UBA, or disordered regions on the phase behavior and physiological functions of UBQLN2.

     
    more » « less
  3. Abstract

    Transient receptor potential vanilloid (TRPV) channels play various important roles in human physiology. As membrane proteins, these channels are modulated by their endogenous lipid environment as the recent wealth of structural studies has revealed functional and structural lipid binding sites. Additionally, it has been shown that exogenous ligands can exchange with some of these lipids to alter channel gating. Here, we used molecular dynamics simulations to examine how one member of the TRPV family, TRPV2, interacts with endogenous lipids and the pharmacological modulator cannabidiol (CBD). By computationally reconstituting TRPV2 into a typical plasma membrane environment, which includes phospholipids, cholesterol, and phosphatidylinositol (PIP) in the inner leaflet, we showed that most of the interacting surface lipids are phospholipids without strong specificity for headgroup types. Intriguingly, we observed that the C‐terminal membrane proximal region of the channel binds preferentially to PIP lipids. We also modelled two structural lipids in the simulation: one in the vanilloid pocket and the other in the voltage sensor‐like domain (VSLD) pocket. The simulation shows that the VSLD lipid dampens the fluctuation of the VSLD residues, while the vanilloid lipid exhibits heterogeneity both in its binding pose and in its influence on protein dynamics. Addition of CBD to our simulation system led to an open selectivity filter and a structural rearrangement that includes a clockwise rotation of the ankyrin repeat domains, TRP helix, and VSLD. Together, these results reveal the interplay between endogenous lipids and an exogenous ligand and their effect on TRPV2 stability and channel gating.

     
    more » « less
  4. Abstract

    Instability of colloidal iodine‐based inorganic perovskite CsPbX3(X = Cl, Br, I) nanocrystals (IPNCs) represents a major obstacle in lead‐halide IPNC research and application. Herein, a ligand‐anchoring process is reported that enables significantly improved colloidal stability of the iodine‐based IPNCs for over 10 months in ambient. Apart from the previous efforts in searching for strong binding ligands to cap the IPNCs to incrementally reduce the exposure of the IPNC surface to the harsh colloidal environment, the ligand‐anchoring method demonstrates that such an exposure can be reduced substantially by suppressing the dynamic ligand exchange around the colloidal IPNCs. In the IPNC synthesis solution with common oleic acid (OA) and oleylamine (OLA) ligands with relative weak binding to IPNCs, a systematic reduction of the ligand concentration using hexane by an order of magnitude has shown to be effective in achieving OA/OLA ligand‐anchored iodine‐based IPNCs with superior stability as confirmed in optical absorption, photoluminescence,1H solution nuclear magnetic resonance spectroscopy, and photoresponse. This result has revealed that the intermittent exposure of the IPNC surface during the dynamic ligand exchange is a primary mechanism underlying the colloidal IPNC instability, which can be resolved in the ligand‐anchoring process by suppressing such dynamic activities.

     
    more » « less
  5. ConspectusGold nanoparticles (AuNPs) exhibit unique size- and shape-dependent properties not obtainable at the macroscale. Gold nanorods (AuNRs), with their morphology-dependent optical properties, ability to convert light to heat, and high surface-to-volume ratios, are of great interest for biosensing, medicine, and catalysis. While the gold core provides many fascinating properties, this Account focuses on AuNP soft surface coatings, which govern the interactions of nanoparticles with the local environments. Postmodification of AuNP surface chemistry can greatly alter NP colloidal stability, nano-bio interactions, and functionality. Polyelectrolyte coatings provide controllable surface-coating thickness and charge, which impact the composition of the acquired corona in biological settings. Covalent modification, in which covalently bound ligands replace the original capping layer, is often performed with thiols and disulfides due to their ability to replace native coatings. N-heterocyclic carbenes and looped peptides expand the possible functionalities of the ligand layer.The characterization of surface ligands bound to AuNPs, in terms of ligand density and dynamics, remains a challenge. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for understanding molecular structures and dynamics. Our recent NMR work on AuNPs demonstrated that NMR data were obtainable for ligands on NPs with diameters up to 25 nm for the first time. This was facilitated by the strong proton NMR signals of the trimethylammonium headgroup, which are present in a distinct regime from other ligand protons’ signals. Ligand density analyses showed that the smallest AuNPs (below 4 nm) had the largest ligand densities, yet spin–spin T2 measurements revealed that these smallest NPs also had the most mobile ligand headgroups. Molecular dynamics simulations were able to reconcile these seemingly contradictory results.While NMR spectroscopy provides ligand information averaged over many NPs, the ligand distribution on individual particles’ surfaces must also be probed to fully understand the surface coating. Taking advantage of improvements in electron energy loss spectroscopy (EELS) detectors employed with scanning transmission electron microscopy (STEM), a single-layer graphene substrate was used to calibrate the carbon K-edge EELS signal, allowing quantitative imaging of the carbon atom densities on AuNRs with sub-nanometer spatial resolution. In collaboration with others, we revealed that the mean value for surfactant-bilayer-coated AuNRs had 10–30% reduced ligand density at the ends of the rods compared to the sides, confirming prior indirect evidence for spatially distinct ligand densities.Recent work has found that surface ligands on nanoparticles can, somewhat surprisingly, enhance the selectivity and efficiency of the electrocatalytic reduction of CO2 by controlling access to the active site, tuning its electronic and chemical environment, or denying entry to impurities that poison the nanoparticle surface to facilitate reduction. Looking to the future, while NMR and EELS are powerful and complementary techniques for investigating surface coatings on AuNPs, the frontier of this field includes the development of methods to probe the surface ligands of individual NPs in a high-throughput manner, to monitor nano-bio interactions within complex matrices, and to study structure–property relationships of AuNPs in biological systems. 
    more » « less