The oxidation of 2D MXenes jeopardizes their shelf life, both in colloidal dispersions and in functional devices. Certain compounds have been shown to effectively mitigate oxidation of MXenes (such as sodium L‐ascorbate, ascorbic acid, and polyanions), but the nature of interaction between these antioxidants and MXene remains unknown, which impedes the future selection and design of improved protection. This work systematically examines the interactions between three classes of organic antioxidant candidates, α‐hydroxy acids, polycarboxylic acids, and phenols with Ti
MXenes, a family of 2D transition‐metal carbides and nitrides, have excellent electrical conductivity and unique optical properties. However, MXenes oxidize in ambient conditions, which is accelerated upon heating. Intercalation of water also causes hydrolysis accelerating oxidation. Developing new tools to readily characterize MXenes’ thermal stability can enable deeper insights into their structure–property relationships. Here, in situ spectroscopic ellipsometry (SE) is employed to characterize the optical properties of three types of MXenes (Ti3C2T
- PAR ID:
- 10442230
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small Methods
- Volume:
- 7
- Issue:
- 10
- ISSN:
- 2366-9608
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract n +1Cn Tx MXenes, specifically Ti3C2Tx and Ti2CTx . Interestingly, while some antioxidants provide no protection for the MXenes, and some antioxidants even accelerate their degradation, three antioxidants (e.g., citric acid, tartaric acid, and oxalic acid) protect the MXene nanosheets exceptionally well, showing minimum MXene degradation after the 14‐day storage period. Analysis of the antioxidants’ molecular structure and efficacy suggests that chelation interactions with the transition metal atoms of the nanosheets play a key role in effective protection of MXenes from oxidation. -
Abstract The chemical stability of 2D MXene nanosheets in aqueous dispersions must be maintained to foster their widespread application. MXene nanosheets react with water, which results in the degradation of their 2D structure into oxides and carbon residues. The latter detrimentally restricts the shelf life of MXene dispersions and devices. However, the mechanism of MXene degradation in aqueous environment has yet to be fully understood. In this work, the oxidation kinetics is investigated of Ti3C2T
x and Ti2CTx in aqueous media as a function of initial pH values, ionic strengths, and nanosheet concentrations. The pH value of the dispersion is found to change with time as a result of MXene oxidation. Specifically, MXene oxidation is accelerated in basic media by their reaction with hydroxyl anions. It is also demonstrated that oxidation kinetics are strongly dependent on nanosheet dispersion concentration, in which oxidation is accelerated for lower MXene concentrations. Ionic strength does not strongly affect MXene oxidation. The authors also report that citric acid acts as an effective antioxidant and mitigates the oxidation of both Ti3C2Tx and Ti2CTx MXenes. Reactive molecular dynamic simulations suggest that citric acid associates with the nanosheet edge to hinder the initiation of oxidation. -
Abstract MXenes constitute a rapidly growing family of 2D materials that are promising for optoelectronic applications because of numerous attractive properties, including high electrical conductivity. However, the most widely used titanium carbide (Ti3C2T
x ) MXene transparent conductive electrode exhibits insufficient environmental stability and work function (WF ), which impede practical applications Ti3C2Tx electrodes in solution‐processed optoelectronics. Herein, Ti3C2Tx MXene film with a compact structure and a perfluorosulfonic acid (PFSA) barrier layer is presented as a promising electrode for organic light‐emitting diodes (OLEDs). The electrode shows excellent environmental stability, highWF of 5.84 eV, and low sheet resistanceR Sof 97.4 Ω sq−1. The compact Ti3C2Tx structure after thermal annealing resists intercalation of moisture and environmental contaminants. In addition, the PFSA surface modification passivates interflake defects and modulates theWF . Thus, changes in theWF andR Sare negligible even after 22 days of exposure to ambient air. The Ti3C2Tx MXene is applied for large‐area, 10 × 10 passive matrix flexible OLEDs on substrates measuring 6 × 6 cm. This work provides a simple but efficient strategy to overcome both the limited environmental stability and lowWF of MXene electrodes for solution‐processable optoelectronics. -
null (Ed.)Abstract Here we report for the first time that Ti 3 C 2 T x /polymer composite films rapidly heat when exposed to low-power radio frequency fields. Ti 3 C 2 T x MXenes possess a high dielectric loss tangent, which is correlated with this rapid heating under electromagnetic fields. Thermal imaging confirms that these structures are capable of extraordinary heating rates (as high as 303 K/s) that are frequency- and concentration-dependent. At high loading (and high conductivity), Ti 3 C 2 T x MXene composites do not heat under RF fields due to reflection of electromagnetic waves, whereas composites with low conductivity do not heat due to the lack of an electrical percolating network. Composites with an intermediate loading and a conductivity between 10–1000 S m −1 rapidly generate heat under RF fields. This finding unlocks a new property of Ti 3 C 2 T x MXenes and a new material for potential RF-based applications.more » « less
-
Abstract MXenes, a new class of 2D transition metal carbides, nitrides, and carbonitrides, have attracted much attention due to their outstanding properties. Here, we report the broadband spatial self‐phase modulation of Ti2CT
x MXene nanosheets dispersed in deionized water in the visible to near‐infrared regime, highlighting the broadband nonlinear optical (NLO) response of Ti2CTx MXene. Using ultrafast pulsed laser excitation, the nonlinear refractive indexn 2and the third‐order nonlinear susceptibilityof Ti2CT x MXene were measured to be ∼10−13m2/W and ∼ 10−10esu, respectively. Leveraging the large optical nonlinearity of Ti2CTx MXene, an all‐optical modulator in the visible regime was fabricated based on the spatial cross‐phase modulation effect. This work suggests that 2D MXenes are ideal broadband NLO materials with excellent prospects in NLO applications.image