Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract MXenes exhibit remarkable properties, including high electrical conductivity, tunable surface chemistry, outstanding mechanical strength, and notable hydrophilicity. Recent advancements in bio‐functionalization have further enhanced these intrinsic characteristics, unlocking unprecedented opportunities for MXenes across a wide spectrum of applications in both biomedical and environmental domains. This review provides an in‐depth analysis of the synthesis strategies and functionalization techniques that improve MXenes' biocompatibility and expand their potential uses in cutting‐edge applications, including implantable and wearable devices, drug delivery systems, cancer therapies, tissue engineering, and advanced sensing technologies. Moreover, the review explores the utility of bio‐functionalized MXenes in areas such as corrosion protection, water purification, and food safety sensors, underscoring their versatility in addressing urgent global challenges. By conducting a critical evaluation of current research, this review not only highlights the immense potential of bio‐functionalized MXenes but also identifies pivotal gaps in the literature, offering clear pathways for future exploration and innovation in this rapidly evolving field.more » « less
-
Abstract Biomolecule isolation is a crucial process in diverse biomedical and biochemical applications, including diagnostics, therapeutics, research, and manufacturing. Recently, MXenes, a novel class of two‐dimensional nanomaterials, have emerged as promising adsorbents for this purpose due to their unique physicochemical properties. These biocompatible and antibacterial nanomaterials feature a high aspect ratio, excellent conductivity, and versatile surface chemistry. This timely review explores the potential of MXenes for isolating a wide range of biomolecules, such as proteins, nucleic acids, and small molecules, while highlighting key future research trends and innovative applications poised to transform the field. This review provides an in‐depth discussion of various synthesis methods and functionalization techniques that enhance the specificity and efficiency of MXenes in biomolecule isolation. In addition, the mechanisms by which MXenes interact with biomolecules are elucidated, offering insights into their selective adsorption and customized separation capabilities. This review also addresses recent advancements, identifies existing challenges, and examines emerging trends that may drive the next wave of innovation in this rapidly evolving area.more » « less
-
Abstract Inorganic–organic hybrid MXenes (h‐MXenes) are a family of 2D transition metal carbides and nitrides functionalized with alkylimido and alkylamido surface groups. Using cryogenic and room temperature scanning transmission electron microscopy (STEM) and electron energy‐loss spectroscopy (EELS), it is shown that ripplocations, a form of a fundamental defect in 2D and layered structures, are abundant in this family of materials. Furthermore, detailed studies of electron probe sample interactions, focusing on structural deformations caused by the electron beam are presented. The findings indicate that at cryogenic temperatures (≈100 K) and below a specific dose threshold, the structure of h‐MXenes remains largely intact. However, exceeding this threshold leads to electron beam‐induced deformation through ripplocations. Interestingly, the deformation behavior, required dose, and resultant structure are highly dependent on temperature. At 100 K, it is demonstrated that the electron beam can induce ripplocations in situ with a high degree of precision.more » « less
-
Abstract Janus structures have unique properties due to their distinct functionalities on opposing faces, but have yet to be realized with flowing liquids. We demonstrate such Janus liquids with a customizable distribution of nanoparticles (NPs) throughout their structures by joining two aqueous streams of NP dispersions in an apolar liquid. Using this anisotropic integration platform, different magnetic, conductive, or non-responsive NPs can be spatially confined to opposite sides of the original interface using magnetic graphene oxide (mGO)/GO, Ti3C2Tx/GO, or GO suspensions. The resultant Janus liquids can be used as templates for versatile, responsive, and mechanically robust aerogels suitable for piezoresistive sensing, human motion monitoring, and electromagnetic interference (EMI) shielding with a tuned absorption mechanism. The EMI shields outperform their current counterparts in terms of wave absorption, i.e., SET ≈ 51 dB, SER ≈ 0.4 dB, and A = 0.91, due to their high porosity ranging from micro- to macro-scales along with non-interfering magnetic and conductive networks imparted by the Janus architecture.more » « less
-
Abstract MXenes, a family of 2D transition‐metal carbides and nitrides, have excellent electrical conductivity and unique optical properties. However, MXenes oxidize in ambient conditions, which is accelerated upon heating. Intercalation of water also causes hydrolysis accelerating oxidation. Developing new tools to readily characterize MXenes’ thermal stability can enable deeper insights into their structure–property relationships. Here, in situ spectroscopic ellipsometry (SE) is employed to characterize the optical properties of three types of MXenes (Ti3C2Tx, Mo2TiC2Tx, and Ti2CTx) with varied composition and atomistic structures to investigate their thermal degradation upon heating under ambient environment. It is demonstrated that changes in MXene extinction and optical conductivity in the visible and near‐IR regions correlate well with the amount of intercalated water and hydroxyl termination groups and the degree of oxidation, measured using thermogravimetric analysis. Among the three MXenes, Ti3C2Txand Ti2CTx, respectively, have the highest and lowest thermal stability, indicating the role of transition‐metal type, synthesis route, and the number of atomic layers in MXene flakes. These findings demonstrate the utility of SE as a powerful in situ technique for rapid structure–property relationship studies paving the way for the further design, fabrication, and property optimization of novel MXene materials.more » « less
-
Abstract MXene and graphene cryogels have demonstrated excellent electromagnetic interference (EMI) shielding effectiveness due to their exceptional electrical conductivity, low density, and ability to dissipate electromagnetic waves through numerous internal interfaces. However, their synthesis demands costly reduction techniques and/or pre‐processing methods such as freeze‐casting to achieve high EMI shielding and mechanical performance. Furthermore, limited research has been conducted on optimizing the cryogel microstructures and porosity to enhance EMI shielding effectiveness while reducing materials consumption. Herein, a novel approach to produce ultra‐lightweight cryogels composed of Ti3C2Tx/graphene oxide (GO) displaying multiscale porosity is presented to enable high‐performance EMI shielding. This method uses controllable templating through the interfacial assembly of filamentous‐structured liquids that are readily converted into EMI cryogels. The obtained ultra‐flyweight cryogels (3–7 mg cm−3) exhibit outstanding specific EMI shielding effectiveness (33 000–50 000 dB cm2 g−1) while eliminating the need for chemical or thermal reduction. Furthermore, exceptional shielding is achieved when the Ti3C2Tx/GO cryogels are used as the backbone of conductive epoxy nanocomposites, yielding EMI shielding effectiveness of 31.7–51.4 dB at a low filler loading (0.3–0.7 wt%). Overall, a one‐of‐a‐kind EMI shielding system is introduced that is readily processed while affording scalability and performance.more » « less
-
Ti3C2TxMXene membranes have attracted considerable interest due to their exceptional water transport properties, yet the role of cation intercalation on governing transport remains poorly understood. In this experimental and theoretical study, it shows how intercalation with K+, Na+, Li+, Ca2+, and Mg2+modulates both the nanochannel architecture and water flux of Ti3C2Txmembranes. Unlike in graphene oxide analogs, cations with larger hydration diameters in Ti3C2Txexpand the interlayer spacing, widening flow channels, enhancing slip length of these nanochannels, and boosting water flux from 31.45 to 61.86 L m−2 h−1. To overcome intrinsically poor adhesion of Ti3C2Txto polymeric supports, this study incorporates a thin polyvinyl‐alcohol interlayer, which substantially enhances mechanical robustness and structural integrity. Together, these findings elucidate how cation hydration controls water transport and offer a flexible strategy for tailoring MXene membrane performance.more » « lessFree, publicly-accessible full text available August 13, 2026
-
Free, publicly-accessible full text available July 31, 2026
-
Free, publicly-accessible full text available June 13, 2026
-
What does materials science look like in the “Age of Artificial Intelligence?” Each material’s domain—synthesis, characterization, and modeling—has a different answer to this question, motivated by unique challenges and constraints. This work focuses on the tremendous potential of autonomous characterization within electron microscopy. We present our recent advancements in developing domain-aware, multimodal models for microscopy analysis capable of describing complex atomic systems. We then address the critical gap between the theoretical promise of autonomous microscopy and its current practical limitations, showcasing recent successes while highlighting the necessary developments to achieve robust, real-world autonomy.more » « less
An official website of the United States government
