skip to main content


Title: Combinatorial phenotypic screen uncovers unrecognized family of extended thiourea inhibitors with copper-dependent anti-staphylococcal activity
Abstract

The continuous rise of multi-drug resistant pathogenic bacteria has become a significant challenge for the health care system. In particular, novel drugs to treat infections of methicillin-resistant Staphylococcus aureus strains (MRSA) are needed, but traditional drug discovery campaigns have largely failed to deliver clinically suitable antibiotics. More than simply new drugs, new drug discovery approaches are needed to combat bacterial resistance. The recently described phenomenon of copper-dependent inhibitors has galvanized research exploring the use of metal-coordinating molecules to harness copper’s natural antibacterial properties for therapeutic purposes. Here, we describe the results of the first concerted screening effort to identify copper-dependent inhibitors of Staphylococcus aureus. A standard library of 10 000 compounds was assayed for anti-staphylococcal activity, with hits defined as those compounds with a strict copper-dependent inhibitory activity. A total of 53 copper-dependent hit molecules were uncovered, similar to the copper independent hit rate of a traditionally executed campaign conducted in parallel on the same library. Most prominent was a hit family with an extended thiourea core structure, termed the NNSN motif. This motif resulted in copper-dependent and copper-specific S. aureus inhibition, while simultaneously being well tolerated by eukaryotic cells. Importantly, we could demonstrate that copper binding by the NNSN motif is highly unusual and likely responsible for the promising biological qualities of these compounds. A subsequent chemoinformatic meta-analysis of the ChEMBL chemical database confirmed the NNSNs as an unrecognized staphylococcal inhibitor, despite the family’s presence in many chemical screening libraries. Thus, our copper-biased screen has proven able to discover inhibitors within previously screened libraries, offering a mechanism to reinvigorate exhausted molecular collections.

 
more » « less
NSF-PAR ID:
10442276
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Metallomics
Volume:
8
Issue:
4
ISSN:
1756-5901
Page Range / eLocation ID:
p. 412-421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dunman, Paul (Ed.)
    ABSTRACT The bacterial type IV pilus (T4P) is a prominent virulence factor in many significant human pathogens, some of which have become increasingly antibiotic resistant. Antivirulence chemotherapeutics are considered a promising alternative to antibiotics because they target the disease process instead of bacterial viability. However, a roadblock to the discovery of anti-T4P compounds is the lack of a high-throughput screen (HTS) that can be implemented relatively easily and economically. Here, we describe the first HTS for the identification of inhibitors specifically against the T4P assembly ATPase PilB in vitro . Chloracidobacterium thermophilum PilB ( Ct PilB) had been demonstrated to have robust ATPase activity and the ability to bind its expected ligands in vitro. We utilized Ct PilB and MANT-ATP, a fluorescent ATP analog, to develop a binding assay and adapted it for an HTS. As a proof of principle, we performed a pilot screen with a small compound library of kinase inhibitors and identified quercetin as a PilB inhibitor in vitro . Using Myxococcus xanthus as a model bacterium, we found quercetin to reduce its T4P-dependent motility and T4P assembly in vivo. These results validated our HTS as effective in identifying PilB inhibitors. This assay may prove valuable in seeking leads for the development of antivirulence chemotherapeutics against PilB, an essential and universal component of all bacterial T4P systems. IMPORTANCE Many bacterial pathogens use their type IV pili (T4P) to facilitate and maintain infection of a human host. Small chemical compounds that inhibit the production or assembly of T4P hold promise in the treatment and prevention of infections, especially in the era of increasing threats from antibiotic-resistant bacteria. However, few chemicals are known to have inhibitory or anti-T4P activity. Their identification has not been easy due to the lack of a method for the screening of compound collections or libraries on a large scale. Here, we report the development of an assay that can be scaled up to screen compound libraries for inhibitors of a critical T4P assembly protein. We further demonstrate that it is feasible to use whole cells to examine potential inhibitors for their activity against T4P assembly in a bacterium. 
    more » « less
  2. Visca, Paolo (Ed.)
    ABSTRACT With the pressing antibiotic resistance pandemic, antivirulence has been increasingly explored as an alternative strategy against bacterial infections. The bacterial type IV pilus (T4P) is a well-documented virulence factor and an attractive target for small molecules for antivirulence purposes. The PilB ATPase is essential for T4P biogenesis because it catalyzes the assembly of monomeric pilins into the polymeric pilus filament. Here, we describe the identification of two PilB inhibitors by a high-throughput screen (HTS) in vitro and their validation as effective inhibitors of T4P assembly in vivo . We used Chloracidobacterium thermophilum PilB as a model enzyme to optimize an ATPase assay for the HTS. From a library of 2,320 compounds, benserazide and levodopa, two approved drugs for Parkinson’s disease, were identified and confirmed biochemically to be PilB inhibitors. We demonstrate that both compounds inhibited the T4P-dependent motility of the bacteria Myxoccocus xanthus and Acinetobacter nosocomialis . Additionally, benserazide and levodopa were shown to inhibit A. nosocomialis biofilm formation, a T4P-dependent process. Using M. xanthus as a model, we showed that both compounds inhibited T4P assembly in a dose-dependent manner. These results suggest that these two compounds are effective against the PilB protein in vivo. The potency of benserazide and levodopa as PilB inhibitors both in vitro and in vivo demonstrate potentials of the HTS and its two hits here for the development of anti-T4P chemotherapeutics. IMPORTANCE Many bacterial pathogens use their type IV pilus (T4P) to facilitate and maintain an infection in a human host. Small-molecule inhibitors of the production or assembly of the T4P are promising for the treatment and prevention of infections by these bacteria, especially in our fight against antibiotic-resistant pathogens. Here, we report the development and implementation of a method to identify anti-T4P chemicals from compound libraries by high-throughput screen. This led to the identification and validation of two T4P inhibitors both in the test tubes and in bacteria. The discovery and validation pipeline reported here as well as the confirmation of two anti-T4P inhibitors provide new venues and leads for the development of chemotherapeutics against antibiotic-resistant infections. 
    more » « less
  3. Abstract

    The Receptor for Advanced Glycation End products (RAGE) is a pattern recognition receptor that signals for inflammation via the NF‐κB pathway. RAGE has been pursued as a potential target to suppress symptoms of diabetes and is of interest in a number of other diseases associated with chronic inflammation, such as inflammatory bowel disease and bronchopulmonary dysplasia. Screening and optimization have previously produced small molecules that inhibit the activity of RAGE in cell‐based assays, but efforts to develop a therapeutically viable direct‐binding RAGE inhibitor have yet to be successful. Here, we show that a fragment‐based approach can be applied to discover fundamentally new types of RAGE inhibitors that specifically target the ligand‐binding surface. A series of systematic assays of structural stability, solubility, and crystallization were performed to select constructs of the RAGE ligand‐binding domain and optimize conditions for NMR‐based screening and co‐crystallization of RAGE with hit fragments. An NMR‐based screen of a highly curated ~14 000‐member fragment library produced 21 fragment leads. Of these, three were selected for elaboration based on structure‐activity relationships generated through cycles of structural analysis by X‐ray crystallography, structure‐guided design principles, and synthetic chemistry. These results, combined with crystal structures of the first linked fragment compounds, demonstrate the applicability of the fragment‐based approach to the discovery of RAGE inhibitors.

     
    more » « less
  4. null (Ed.)
    With the recent explosion in the size of libraries available for screening, virtual screening is positioned to assume a more prominent role in early drug discovery’s search for active chemical matter. In typical virtual screens, however, only about 12% of the top-scoring compounds actually show activity when tested in biochemical assays. We argue that most scoring functions used for this task have been developed with insufficient thoughtfulness into the datasets on which they are trained and tested, leading to overly simplistic models and/or overtraining. These problems are compounded in the literature because studies reporting new scoring methods have not validated their models prospectively within the same study. Here, we report a strategy for building a training dataset (D-COID) that aims to generate highly compelling decoy complexes that are individually matched to available active complexes. Using this dataset, we train a general-purpose classifier for virtual screening (vScreenML) that is built on the XGBoost framework. In retrospective benchmarks, our classifier shows outstanding performance relative to other scoring functions. In a prospective context, nearly all candidate inhibitors from a screen against acetylcholinesterase show detectable activity; beyond this, 10 of 23 compounds have IC 50 better than 50 μM. Without any medicinal chemistry optimization, the most potent hit has IC 50 280 nM, corresponding to K i of 173 nM. These results support using the D-COID strategy for training classifiers in other computational biology tasks, and for vScreenML in virtual screening campaigns against other protein targets. Both D-COID and vScreenML are freely distributed to facilitate such efforts. 
    more » « less
  5. Abstract

    RNA dependent RNA polymerase (RdRp), is an essential in the RNA replication within the life cycle of the severely acute respiratory coronavirus-2 (SARS-CoV-2), causing the deadly respiratory induced sickness COVID-19. Remdesivir is a prodrug that has seen some success in inhibiting this enzyme, however there is still the pressing need for effective alternatives. In this study, we present the discovery of four non-nucleoside small molecules that bind favorably to SARS-CoV-2 RdRp over the active form of the popular drug remdesivir (RTP) and adenosine triphosphate (ATP) by utilizing high-throughput virtual screening (HTVS) against the vast ZINC compound database coupled with extensive molecular dynamics (MD) simulations. After post-trajectory analysis, we found that the simulations of complexes containing both ATP and RTP remained stable for the duration of their trajectories. Additionally, it was revealed that the phosphate tail of RTP was stabilized by both the positive amino acid pocket and magnesium ions near the entry channel of RdRp which includes residues K551, R553, R555 and K621. It was also found that residues D623, D760, and N691 further stabilized the ribose portion of RTP with U10 on the template RNA strand forming hydrogen pairs with the adenosine motif. Using these models of RdRp, we employed them to screen the ZINC database of ~ 17 million molecules. Using docking and drug properties scoring, we narrowed down our selection to fourteen candidates. These were subjected to 200 ns simulations each underwent free energy calculations. We identified four hit compounds from the ZINC database that have similar binding poses to RTP while possessing lower overall binding free energies, with ZINC097971592 having a binding free energy two times lower than RTP.

     
    more » « less