skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Crystal Structures and Property Measurements of Rare Earth Magnesium Thiosilicates Synthesized via Flux Crystal Growth Utilizing the Boron Chalcogen Mixture (BCM) Method
Nine new rare earth magnesium-containing thiosilicates of the formula RE3Mg0.5SiS7 (Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) were synthesized in an alkali halide flux using the boron chalcogen mixture (BCM) method. Crystals of high quality were produced, and their structures were determined by single-crystal X-ray diffraction. The compounds crystallize in the hexagonal crystal system in the P63 space group. Phase pure powders of the compounds were used for magnetic susceptibility measurements and for second harmonic generation (SHG) measurements. Magnetic measurements indicate that Ce3Mg0.5SiS7, Sm3Mg0.5SiS7, and Dy3Mg0.5SiS7 exhibit paramagnetic behavior with a negative Weiss temperature over the 2−300 K temperature range. SHG measurements of La3Mg0.5SiS7 demonstrated SHG activity with an efficiency of 0.16 times the standard potassium dihydrogen phosphate (KDP).  more » « less
Award ID(s):
2002319
PAR ID:
10442331
Author(s) / Creator(s):
Date Published:
Journal Name:
Inorganic chemistry
Volume:
62
ISSN:
0020-1669
Page Range / eLocation ID:
7446−7452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cu2TSiS4 (T = Mn and Fe) polycrystalline and single-crystal materials were prepared with high-temperature solid-state and chemical vapor transport methods, respectively. The polar crystal structure (space group Pmn21) consists of chains of corner-sharing and distorted CuS4, Mn/FeS4, and SiS4 tetrahedra, which is confirmed by Rietveld refinement using neutron powder diffraction data, X-ray single-crystal refinement, electron diffraction, energy-dispersive X-ray spectroscopy, and second harmonic generation (SHG) techniques. Magnetic measurements indicate that both compounds order antiferromagnetically at 8 and 14 K, respectively, which is supported by the temperature-dependent (100–2 K) neutron powder diffraction data. Additional magnetic reflections observed at 2 K can be modeled by magnetic propagation vectors k = (1/2,0,1/2) and k = (1/2,1/2,1/2) for Cu2MnSiS4 and Cu2FeSiS4, respectively. The refined antiferromagnetic structure reveals that the Mn/Fe spins are canted away from the ac plane by about 14°, with the total magnetic moments of Mn and Fe being 4.1(1) and 2.9(1) μB, respectively. Both compounds exhibit an SHG response with relatively modest second-order nonlinear susceptibilities. Density functional theory calculations are used to describe the electronic band structures. 
    more » « less
  2. Two new compounds, Zn2FeSbO6 and Zn2MnSbO6, have been synthesized under high-pressure and high-temperature conditions. The synthesis, single-crystal and powder X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), optical second harmonic generation (SHG), and magnetic and heat capacity measurements were carried out for both compounds and are described. The lattice parameters are a = 5.17754(6) Å and c = 13.80045(16) Å for Zn2FeSbO6 and a = 5.1889(10) Å and c = 14.0418(3) Å for Zn2MnSbO6. Single-crystal X-ray diffraction analyses indicate that Zn2FeSbO6 consists of a cocrystal of superimposed Ni3TeO6 (NTO) and ordered ilmenite (OIL) components with a ratio of approximately 2:1 and Zn2MnSbO6 contains two nearly identical, but noncrystallographically related, OIL components in a ratio of approximately 6:1. 
    more » « less
  3. The noncentrosymmetric Weyl semimetal PtBi2−x (t-PtBi2−x) exhibits various interesting technologically important physical properties. We report the experimental investigation of PtBi1.6 via second harmonic generation (SHG), single-crystal x-ray diffraction, magnetic susceptibility, and electrical resistivity measurements. While bulk structural, magnetic, and electrical properties show no phase transitions below room temperature, the temperature dependence of the SHG intensity reveals two anomalies: one at T ∗ ∼ 60 K and another at Tx ∼ 200 K. Quantitative analysis indicates that the SHG signal results from both the buckled Bi1 surface termination with the 3m symmetry and flat Bi2 surface termination with the m symmetry. However, the anomalies are mainly driven by Bi1 on the surface: (1) T ∗ marks the onset of surface states which is also manifested in the c-axis resistivity drop and (2) Tx corresponds to the lowest thermal contraction of the structure and enhanced magnetic susceptibility. This study demonstrates that SHG is a powerful technique for probing surface properties even for noncentrosymmetric materials. 
    more » « less
  4. Geometric magnetic frustration arises when the geometry of a structure prevents the simultaneous fulfillment of nearest-neighbor antiferromagnetic interactions and is commonly observed in lattices that exhibit a triangular topology, such as those found in the pyrochlore structure. Via a mild hydrothermal route, we have synthesized seven quaternary β-pyrochlore related fluorides AxM2+xM3+(2–x)F6, (A = Cs and Rb; M2+ = Co2+, Ni2+ and Zn2+; and M3+ = V3+ and Fe3+). Crystal structures and compositions were determined using a combination of single-crystal X-ray diffraction and energy-dispersive spectroscopy. After adjusting the reaction conditions, phase pure products of AxM2+xM3+(2–x)F6 were obtained. The magnetic susceptibility and isothermal magnetization data for all seven compounds were collected to interpret the magnetic behavior, which ranged from paramagnetic to antiferromagnetic with and without a ferromagnetic component. We found that the magnetic behavior of the AxM2+xV3+(2–x)F6 pyrochlore structures strongly depends on the presence or absence of unpaired electrons on the M2+ position. The titled pyrochlore compounds, with the exception of the Zn-analog, can be considered frustrated materials, with frustration indices in the range of 6 –13. 
    more » « less
  5. Abstract A single‐crystal specimen of rutile (titania) was flashed repetitively, while increasing the electric field after each cycle. As expected, the flash onset temperature continued to drop modestly at higher fields. However, when the field was increased from 400 to 450 V cm–1, the flashed onset fell dramatically down to room temperature. We have investigated the electrical and optical properties of this room temperature flashed specimen (called SZ). The specimen was electronically conducting. Optical absorption spectroscopy revealed a narrow band of new energy levels that were generated just below the conduction band. The gap between the conduction band and this flash‐induced energy level agreed with the peak in the electroluminescence spectrum. Optical second harmonic generation (SHG) is reported. The flash‐on condition significantly lowered the SHG, which rebounded when the flash was turned off. This result suggests that the structure becomes more centrosymmetric in the state of flash, which may represent a disordered state of defects. The possibility of studying flash behavior at room temperature, without a furnace (as in SZ type specimens), opens a considerable simplification for in‐situ characterization of flash behavior. For example, a possible relationship between memristor physics and the flash phenomenon can be studied. 
    more » « less