skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zn 2 MnSbO 6 and Zn 2 FeSbO 6 : Two New Polar High-Pressure Ordered Corundum-Type Compounds
Two new compounds, Zn2FeSbO6 and Zn2MnSbO6, have been synthesized under high-pressure and high-temperature conditions. The synthesis, single-crystal and powder X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), optical second harmonic generation (SHG), and magnetic and heat capacity measurements were carried out for both compounds and are described. The lattice parameters are a = 5.17754(6) Å and c = 13.80045(16) Å for Zn2FeSbO6 and a = 5.1889(10) Å and c = 14.0418(3) Å for Zn2MnSbO6. Single-crystal X-ray diffraction analyses indicate that Zn2FeSbO6 consists of a cocrystal of superimposed Ni3TeO6 (NTO) and ordered ilmenite (OIL) components with a ratio of approximately 2:1 and Zn2MnSbO6 contains two nearly identical, but noncrystallographically related, OIL components in a ratio of approximately 6:1.  more » « less
Award ID(s):
2117792
PAR ID:
10581494
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Chemistry of Materials
Volume:
36
Issue:
24
ISSN:
0897-4756
Page Range / eLocation ID:
11833 to 11851
Subject(s) / Keyword(s):
Cations Crystal structure Granular materials Transition metals X-rays
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The previously unreported layered compounds IrTe 2 I and RhTe 2 I were prepared by a high-pressure synthesis method. Single crystal X-ray and powder X-ray diffraction studies find that the compounds are isostructural, crystallizing in a layered orthorhombic structure in the non-centrosymmetric, non-symmorphic space group Pca 2 1 (#29). Characterization reveals diamagnetic, high resistivity, semiconducting behavior for both compounds, consistent with the +3 chemical valence and d 6 electronic configurations for both iridium and rhodium and the Te–Te dimers seen in the structural study. Electronic band structures are calculated for both compounds, showing good agreement with the experimental results. 
    more » « less
  2. Reported is the synthesis of a new polar intermetallic phase, Ca4CdIn2Ge4, crystals of which can be readily obtained employing the In‐flux method. The structure and the chemical composition of the new compound are established based on single‐crystal X‐Ray diffraction and energy‐dispersive X‐Ray spectroscopy data. Ca4CdIn2Ge4crystallizes in a monoclinic crystal system with the space groupC2/m(no. 12) with lattice parametersa = 16.7383(12) Å,b = 4.4235(3) Å,c = 7.4322(5) Å, andβ = 106.560(1)°. The structure can formally be classified as a variant of the Mg5Si6structure type (Pearson symbolmS22). Considering the InGe and CdGe interactions as mostly covalent, the polyanionic substructure can be rationalized as consisting of ribbons of edge‐shared [InGe4] tetrahedra connected by Ge2dimers and bridged by Cd atoms in nearly square‐planar environment. Chemical bonding analysis based on TB‐LMTO‐ASA calculations affirms the notion for covalent character of the GeGe bonding with the dimers. The calculations also show that the bonding in the tetrahedra is more covalent in character than the bonding in square‐planar fragments, with the CaGe interactions being the least covalent among all interactions, though not exactly ionic. 
    more » « less
  3. We report the two-dimensional (2D) bimetallic selenophosphate, LiGaP2Se6, prepared through direct combination reactions and P2Se5 flux methods. The material is a member of the broad class of van der Waals 2D materials of the type M2P2Q6 (M = metals). The structure was determined using single-crystal X-ray diffraction and refined in the chiral space group P3̅1c, with lattice parameters a = b = 6.2993(9) Å, c = 13.308(3) Å, α = β = 90°, γ = 120°. Differential thermal analysis indicated a congruent melting point at ∼458 °C. Optoelectronic properties were assessed using ultraviolet–visible (UV–vis) spectroscopy, showing a band gap of 2.01 eV, and photoemission yield spectroscopy in air (PYSA), which determined a work function of 5.44 eV. Notably, stability studies on LiGaP2Se6 revealed remarkable resilience despite its Li content, showing no structural changes after 2 weeks in ambient air or after soaking in a water/ethanol bath. 
    more » « less
  4. Cu2TSiS4 (T = Mn and Fe) polycrystalline and single-crystal materials were prepared with high-temperature solid-state and chemical vapor transport methods, respectively. The polar crystal structure (space group Pmn21) consists of chains of corner-sharing and distorted CuS4, Mn/FeS4, and SiS4 tetrahedra, which is confirmed by Rietveld refinement using neutron powder diffraction data, X-ray single-crystal refinement, electron diffraction, energy-dispersive X-ray spectroscopy, and second harmonic generation (SHG) techniques. Magnetic measurements indicate that both compounds order antiferromagnetically at 8 and 14 K, respectively, which is supported by the temperature-dependent (100–2 K) neutron powder diffraction data. Additional magnetic reflections observed at 2 K can be modeled by magnetic propagation vectors k = (1/2,0,1/2) and k = (1/2,1/2,1/2) for Cu2MnSiS4 and Cu2FeSiS4, respectively. The refined antiferromagnetic structure reveals that the Mn/Fe spins are canted away from the ac plane by about 14°, with the total magnetic moments of Mn and Fe being 4.1(1) and 2.9(1) μB, respectively. Both compounds exhibit an SHG response with relatively modest second-order nonlinear susceptibilities. Density functional theory calculations are used to describe the electronic band structures. 
    more » « less
  5. Abstract During the search for transition metal‐free alkyne hydrogenation catalysts, two new ternary Ca−Ga−Ge phases, Ca2Ga4Ge6(Cmc21, a=4.1600(10) Å, b=23.283(5) Å, c=10.789(3) Å) and Ca3Ga4Ge6(C2/m, a=24.063(2) Å, b=4.1987(4) Å, c=10.9794(9) Å, β=91.409(4)°), were discovered. These compounds are isostructural to the previously established Yb2Ga4Ge6and Yb3Ga4Ge6analogues, and according to Zintl‐Klemm counting rules, consist of anionic [Ga4Ge6]4−and [Ga4Ge6]6−frameworks in which every Ga and Ge atom would have a formal octet with no Ga−Ga or Ga−Ge π‐bonding. These compounds are metallic, based on temperature dependent electrical resistivity and thermopower measurements for Ca3Ga4Ge6, along with density functional theory calculations for both phases. Unlike the highly active 13‐layer trigonal CaGaGe phase, these new compounds exhibit minimal activity in the semi/full alkyne hydrogenation of phenylacetylene, which is consistent with previous observations that the lack of a formal octet for framework atoms is essential for catalysis in these Zintl‐Klemm compounds. 
    more » « less