skip to main content


Title: Enhancing Quantum Emission from Spin Defects in Hexagonal Boron Nitride with a Plasmonic Nanocavity

We report a 250-fold photoluminescence enhancement of VB-spin-defects in hBN by coupling them to nanopatch antennas (NPA). Considering the relative size of the NPAs and laser-spot, an actual enhancement of 1695 times is determined.

 
more » « less
Award ID(s):
2015025
NSF-PAR ID:
10442335
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Enhancing Quantum Emission from Spin Defects in Hexagonal Boron Nitride with a Plasmonic Nanocavity
Page Range / eLocation ID:
FTh3A.1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Piezoelectric materials enable the conversion of mechanical energy into electrical energy and vice‐versa. Ultrahigh piezoelectricity has been only observed in single crystals. Realization of piezoelectric ceramics with longitudinal piezoelectric constant (d33) close to 2000 pC N–1, which combines single crystal‐like high properties and ceramic‐like cost effectiveness, large‐scale manufacturing, and machinability will be a milestone in advancement of piezoelectric ceramic materials. Here, guided by phenomenological models and phase‐field simulations that provide conditions for flattening the energy landscape of polarization, a synergistic design strategy is demonstrated that exploits compositionally driven local structural heterogeneity and microstructural grain orientation/texturing to provide record piezoelectricity in ceramics. This strategy is demonstrated on [001]PC‐textured and Eu3+‐doped Pb(Mg1/3Nb2/3)O3‐PbTiO3(PMN‐PT) ceramics that exhibit the highest piezoelectric coefficient (small‐signald33of up to 1950 pC N–1and large‐signald33* of ≈2100 pm V–1) among all the reported piezoelectric ceramics. Extensive characterization conducted using high‐resolution microscopy and diffraction techniques in conjunction with the computational models reveals the underlying mechanisms governing the piezoelectric performance. Further, the impact of losses on the electromechanical coupling is identified, which plays major role in suppressing the percentage of piezoelectricity enhancement, and the fundamental understanding of loss in this study sheds light on further enhancement of piezoelectricity. These results on cost‐effective and record performance piezoelectric ceramics will launch a new generation of piezoelectric applications.

     
    more » « less
  2. Abstract

    Hyperpolarization of N‐heterocycles with signal amplification by reversible exchange (SABRE) induces NMR sensitivity gains for biological molecules. Substitutions with functional groups, in particular in theortho‐position of the heterocycle, however, result in low polarization using a typical Ir catalyst with a bis‐mesityl N‐heterocyclic carbene ligand for SABRE, presumably due to steric hindrance. With the addition of allylamine or acetonitrile as coligands to the precatalyst chloro(1,5‐cyclooctadiene)[4,5‐dimethyl‐1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene] iridium, the1H signal enhancement increased in several substrates withorthoNH2substitutions. For example, for a proton in 2,4‐diaminopyrimidine, the enhancement factors increased from −7±1 to −210±20 with allylamine or to −160±10 with acetonitrile. CH3substituted molecules yielded maximum signal enhancements of −25±7 with acetonitrile addition, which is considerably less than the corresponding NH2substituted molecules, despite exhibiting similar steric size. With the more electron‐donating NH2substitution resulting in greater enhancement, it is concluded that steric hindrance is not the only dominant factor in determining the polarizability of the CH3substituted compounds. The addition of allylamine increased the signal enhancement for the 290 Da trimethoprim, a molecule with a 2,4‐diaminopyrimidine moiety serving as an antibacterial agent, to −70.

     
    more » « less
  3. Abstract

    Spin defects in hexagonal boron nitride, and specifically the negatively charged boron vacancy (VB) centers, are emerging candidates for quantum sensing. However, the VBdefects suffer from low quantum efficiency and, as a result, exhibit weak photoluminescence. In this work, a scalable approach is demonstrated to dramatically enhance the VBemission by coupling to a plasmonic gap cavity. The plasmonic cavity is composed of a flat gold surface and a silver cube, with few‐layer hBN flakes positioned in between. Employing these plasmonic cavities, two orders of magnitude are extracted in photoluminescence enhancement associated with a corresponding twofold enhancement in optically detected magnetic resonance contrast. The work will be pivotal to progress in quantum sensing employing 2D materials, and in realization of nanophotonic devices with spin defects in hexagonal boron nitride.

     
    more » « less
  4. Abstract

    A novelC3symmetric 1,1’‐bi‐2‐naphthol‐based Schiff base (R,R,R)‐6has been synthesized which shows highly selective fluorescence enhancement with Zn2+among 21 metal cations examined. Its sensitivity and selectivity are found to be greater than other relatedC2(1) andC1[(R)‐9] symmetric compounds in the fluorescent recognition of Zn2+. The mechanistic study reveals that the selective fluorescence enhancement of the probe can be attributed to the formation of a unimolecular multidentate 6‐coordinated Zn2+complex.

     
    more » « less
  5. Abstract

    Two‐dimensional transition metal dichalcogenides (TMDs)/graphene van der Waals (vdW) heterostructures integrate the superior light–solid interaction in TMDs and charge mobility in graphene, and therefore are promising for surface‐enhanced Raman spectroscopy (SERS). Herein, a novel TMD (MoS2and WS2) nanodome/graphene vdW heterostructure SERS substrate, on which an extraordinary SERS sensitivity is achieved, is reported. Using fluorescent Rhodamine 6G (R6G) as probe molecules, the SERS sensitivity is in the range of 10−11to 10−12mon the TMD nanodomes/graphene vdW heterostructure substrates using 532 nm Raman excitation, which is comparable to the best sensitivity reported so far using plasmonic metal nanostructures/graphene SERS substrates, and is more than three orders of magnitude higher than that on single‐layer TMD and graphene substrates. Density functional theory simulation reveals enhanced electric dipole moments and dipole–dipole interaction at the TMD/graphene vdW interface, yielding an effective means to facilitate an external electrostatic perturbation on the graphene surface and charge transfer. This not only promotes chemical enhancement on SERS, but also enables electromagnetic enhancement of SERS through the excitation of localized surface plasmonic resonance on the TMD nanodomes. This TMD nanodome/graphene vdW heterostructure is therefore promising for commercial applications in high‐performance optoelectronics and sensing.

     
    more » « less