skip to main content

Title: Automated surface texture analysis via Discrete Cosine Transform and Discrete Wavelet Transform
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Precision Engineering
Page Range / eLocation ID:
141 to 152
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Beamspace processing is an emerging technique to reduce baseband complexity in massive multiuser (MU) multipleinput multiple-output (MIMO) communication systems operating at millimeter-wave (mmWave) and terahertz frequencies. The high directionality of wave propagation at such high frequencies ensures that only a small number of transmission paths exist between user equipments and basestation (BS). In order to resolve the sparse nature of wave propagation, beamspace processing traditionally computes a spatial discrete Fourier transform (DFT) across a uniform linear antenna array at the BS where each DFT output is associated with a specific beam. In this paper, we study optimality conditions of the DFT for sparsity-based beamspace processing with idealistic mmWave channel models and realistic channels. To this end, we propose two algorithms that learn unitary beamspace transforms using an l4-norm-based sparsity measure, and we investigate their optimality theoretically and via simulations. 
    more » « less
  2. The Hilbert transform is widely used in biomedical signal processing and requires efficient implementation. We propose the implementation of the discrete Hilbert transform based on emerging memristor devices. It uses two matrix multiplication layers using weights programmed in the memristor array and a linear Hadamard product calculation layer mappable to CMOS. The functionality was tested on a dataset of optical cardiac signals from the human heart. The results show negligible <1% angle error between the proposed implementation and the MATLAB function. It also has robustness to non-idealities. This proposed solution can be applied to bio-signal processing at the edge. 
    more » « less