skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PExReport-Maven: Creating Pruned Executable Cross-Project Failure Reports in Maven Build System
Award ID(s):
1736209
PAR ID:
10442438
Author(s) / Creator(s):
;
Date Published:
Journal Name:
32nd ACM SIGSOFT International Symposium on Software Testing and Analysis
Volume:
32
Page Range / eLocation ID:
1523 to 1526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A common setting in astronomy is the availability of a small number of high-quality observations, and larger amounts of either lower-quality observations or synthetic data from simplified models. Time-domain astrophysics is a canonical example of this imbalance, with the number of supernovae observed photometrically outpacing the number observed spectroscopically by multiple orders of magnitude. At the same time, no data-driven models exist to understand these photometric and spectroscopic observables in a common context. Contrastive learning objectives, which have grown in popularity for aligning distinct data modalities in a shared embedding space, provide a potential solution to extract information from these modalities. We present Maven, the first foundation model for supernova science. To construct Maven, we first pre-train our model to align photometry and spectroscopy from 0.5 M synthetic supernovae using a contrastive objective. We then fine-tune the model on 4702 observed supernovae from the Zwicky transient facility. Maven reaches state-of-the-art performance on both classification and redshift estimation, despite the embeddings not being explicitly optimized for these tasks. Through ablation studies, we show that pre-training with synthetic data improves overall performance. In the upcoming era of the Vera C. Rubin observatory, Maven will serve as a valuable tool for leveraging large, unlabeled and multimodal time-domain datasets. 
    more » « less
  2. Katsaros, Panagiotis; Nenzi, Laura (Ed.)
    We present eMOP, a tool for incremental runtime verification (RV) of test executions during software evolution. We previously used RV to find hundreds of bugs in open-source projects by monitoring passing tests against formal specifications of Java APIs. We also proposed evolution-aware techniques to reduce RV’s runtime overhead and human time to inspect specification violations. eMOP brings these benefits to developers in a tool that seamlessly integrates with the Maven build system. We describe eMOP’s design, implementation, and usage. We evaluate eMOP on 676 versions of 21 projects, including those from our earlier prototypes' evaluation. eMOP is up to 8.4x faster and shows up to 31.3x fewer violations, compared to running RV from scratch after each code change. eMOP also does not miss new violations in our evaluation, and it is open-sourced at https://github.com/SoftEngResearch/emop. 
    more » « less
  3. Abstract The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been orbiting Mars since 2014 and now has over 10,000 orbits which we use to characterize Mars' dynamic space environment. Through global field line tracing with MAVEN magnetic field data we find an altitude dependent draping morphology that differs from expectations of induced magnetospheres in the vertical ( Mars Sun‐state, MSO) direction. We quantify this difference from the classical picture of induced magnetospheres with a Bayesian multiple linear regression model to predict the draped field as a function of the upstream interplanetary magnetic field (IMF), remanent crustal fields, and a previously underestimated induced effect. From our model we conclude that unexpected twists in high altitude dayside draping (>800 km) are a result of the IMF component in the MSO direction. We propose that this is a natural outcome of current theories of induced magnetospheres but has been underestimated due to approximations of the IMF as solely directed. We additionally estimate that distortions in low altitude (<800 km) dayside draping along are directly related to remanent crustal fields. We show dayside draping traces down tail and previously reported inner magnetotail twists are likely caused by the crustal field of Mars, while the outer tail morphology is governed by an induced response to the IMF direction. We conclude with an updated understanding of induced magnetospheres which details dayside draping for multiple directions of the incoming IMF and discuss the repercussions of this draping for magnetotail morphology. 
    more » « less
  4. Abstract Stream interaction regions (SIRs) are long-lasting solar wind structures that result from stable fast solar wind interacting with preceding slow solar wind. These structures have been examined in depth throughout the heliosphere, particularly at 1 au; however, due to sparse observations, SIRs have not been characterized thoroughly at 1.5 au. Thanks to the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, we have a chance to fill this observational gap. We implement in situ solar wind data collected by MAVEN to identify SIRs between 2014 November and 2023 September. We observe 185 SIRs with average durations of 2.2 days that occur primarily during periods of low solar activity. We detect 19 forward shocks, seven reverse shocks, and one shock pair within these 185 SIRs. We predict a total SIR-associated shock detection rate of ∼56% at 1.5 au and compare this rate to previous findings spanning 0.1–5 au. We examine Solar Terrestrial Relations Observatory (STEREO) A data at 1 au to cross-compare with our results at 1.5 au. We determine the magnetic compression ratios (H) associated with SIRs at MAVEN and STEREO-A and find thatHis ∼18% higher at 1.5 au than 1 au. We find that for a given SIR observed at both 1 and 1.5 au,His ∼32% higher at 1.5 au. We also do not see a stark difference in the change inHfor SIRs observed at both STEREO-A and MAVEN with respect to the angular separation of the spacecraft. 
    more » « less