Total Synthesis of UCS1025A via Tandem Carbonylative Stille Cross Coupling and Diels‐Alder Reaction †
Comprehensive Summary We report an efficient and convergent strategy for the total synthesis of UCS1025A and its diastereomer tetra‐epi‐UCS1025A. UCS1025A is a representative member of the naturally occurring pyrrolizidinone polyketides, from which members with potent antibacterial, antifungal, and anticancer activities have been identified. Our approach features a tandem carbonylative Stille cross coupling and Diels‐Alder reaction to forge a key C—C bond and build thetrans‐decalin system. This tandem process utilizes carbon monoxide as a one‐carbon linchpin to stitch a vinyl triflate and a vinylstannane together and form the desired enone moiety for the subsequent intramolecular Diels‐Alder cyclization. Our synthesis also provides a versatile approach for the synthesis of other related pyrrolizidinone‐containing polyketides.
more »
« less
- PAR ID:
- 10442593
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chinese Journal of Chemistry
- Volume:
- 41
- Issue:
- 22
- ISSN:
- 1001-604X
- Format(s):
- Medium: X Size: p. 3019-3024
- Size(s):
- p. 3019-3024
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Massarinolin A and purpurolides are bioactive bergamotane sesquiterpenes condensed with a variety of synthetically challenging ring systems: a bicyclo[3.1.1]heptane, an oxaspiro[3.4]octane, and a dioxaspiro[4.4]nonane (oxaspirolactone). Herein, we report the first enantioselective total syntheses of massarinolin A, purpurolides B, D, E, and 2,3‐deoxypurpurolide C. Our synthesis and computational analysis also led to a structural revision of massarinolin A. The divergent approach features an enantioselective organocatalyzed Diels–Alder reaction to install the first stereogenic center in highee, a scalable flow photochemical Wolff rearrangement to build the key bicyclo[3.1.1]heptane, a furan oxidative cyclization to form the oxaspirolactone, a late‐stage allylic C−H oxidation, and a Myers’ NBSH‐promoted sigmatropic elimination to install theexomethylene group of massarinolin A.more » « less
-
Abstract Several charge‐containing TADDOL salts were synthesized and used as organocatalysts in asymmetric Diels–Alder and hetero‐Diels–Alder reactions. Their catalytic activity was found to exceed that of a noncharged analog while maintaining or improving upon the enantioselectivity. The enhanced activities of the TADDOL salts enabled them to act as presumed hydrogen bond donor catalysts in the Diels–Alder and hetero‐Diels–Alder reactions of 1,3‐cyclohexadiene with methyl vinyl ketone at 40°C and 2‐phenoxy‐1,3‐butadiene with ethyl glyoxylate at room temperature, respectively. Given the ionic nature of these charge‐activated catalysts, it also proved possible to recycle and reuse the TADDOL without chromatography or the need for a recrystallization.more » « less
-
Abstract A Rh(II)/Au(I) catalyzed carbene cascade approach for the stereoselective synthesis of diverse spirocarbocycles is described. The cascade reaction involves a rhodium carbene initiatedsp2C−H functionalization followed by a gold catalyzed Conia‐ene cyclization. The cascade reaction accommodates a variety of aryl substituents as well as ring sizes and proceeds with high diastereoselectivity providing access to diverse spirocarbocycles. magnified imagemore » « less
-
Abstract Force‐responsive molecules that produce fluorescent moieties under stress provide a means for stress‐sensing and material damage assessment. In this work, we report a mechanophore based on Diels‐Alder adductTAD‐Anof 4,4′‐(4,4′‐diphenylmethylene)‐bis‐(1,2,4‐triazoline‐3,5‐dione) and initiator‐substituted anthracene that can undergo retro‐Diels‐Alder (rDA) reaction by pulsed ultrasonication and compressive activation in bulk materials. The influence of having C−N versus C−C bonds at the sites of bond scission is elucidated by comparing the relative mechanical strength ofTAD‐Anto another Diels‐Alder adductMAL‐Anobtained from maleimide and anthracene. The susceptibility to undergo rDa reaction correlates well with bond energy, such that C−N bond containingTAD‐Andegrades faster C−C bond containingMAL‐Anbecause C−N bond is weaker than C−C bond. Specifically, the results from polymer degradation kinetics under pulsed ultrasonication shows that polymer containingTAD‐Anhas a rate constant of 1.59×10−5 min−1, whileMAL‐An(C−C bond) has a rate constant of 1.40×10−5 min−1. Incorporation ofTAD‐Anin a crosslinked polymer network demonstrates the feasibility to utilizeTAD‐Anas an alternative force‐responsive probe to visualize mechanical damage where fluorescence can be “turned‐on” due to force‐accelerated retro‐Diels‐Alder reaction.more » « less
An official website of the United States government
