skip to main content


Title: On Human-like Biases in Convolutional Neural Networks for the Perception of Slant from Texture
Depth estimation is fundamental to 3D perception, and humans are known to have biased estimates of depth. This study investigates whether convolutional neural networks (CNNs) can be biased when predicting the sign of curvature and depth of surfaces of textured surfaces under different viewing conditions (field of view) and surface parameters (slant and texture irregularity). This hypothesis is drawn from the idea that texture gradients described by local neighborhoods—a cue identified in human vision literature—are also representable within convolutional neural networks. To this end, we trained both unsupervised and supervised CNN models on the renderings of slanted surfaces with random Polka dot patterns and analyzed their internal latent representations. The results show that the unsupervised models have similar prediction biases as humans across all experiments, while supervised CNN models do not exhibit similar biases. The latent spaces of the unsupervised models can be linearly separated into axes representing field of view and optical slant. For supervised models, this ability varies substantially with model architecture and the kind of supervision (continuous slant vs. sign of slant). Even though this study says nothing of any shared mechanism, these findings suggest that unsupervised CNN models can share similar predictions to the human visual system. Code: github.com/brownvc/Slant-CNN-Biases  more » « less
Award ID(s):
2120610
PAR ID:
10442602
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Applied Perception
ISSN:
1544-3558
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a convolutional neural network model for unsupervised learning of depth and ego-motion from cylindrical panoramic video. Panoramic depth estimation is an important technology for applications such as virtual reality, 3d modeling, and autonomous robotic navigation. In contrast to previous approaches for applying convolutional neural networks to panoramic imagery, we use the cylindrical panoramic projection which allows for the use of the traditional CNN layers such as convolutional filters and max pooling without modification. Our evaluation of synthetic and real data shows that unsupervised learning of depth and ego-motion on cylindrical panoramic images can produce high-quality depth maps and that an increased field-of-view improves ego-motion estimation accuracy. We also introduce Headcam, a novel dataset of panoramic video collected from a helmet-mounted camera while biking in an urban setting. 
    more » « less
  2. Oh, A ; Naumann, T ; Globerson, A ; Saenko, K ; Hardt, M ; Levine, S (Ed.)
    Current deep-learning models for object recognition are known to be heavily biased toward texture. In contrast, human visual systems are known to be biased toward shape and structure. What could be the design principles in human visual systems that led to this difference? How could we introduce more shape bias into the deep learning models? In this paper, we report that sparse coding, a ubiquitous principle in the brain, can in itself introduce shape bias into the network. We found that enforcing the sparse coding constraint using a non-differential Top-K operation can lead to the emergence of structural encoding in neurons in convolutional neural networks, resulting in a smooth decomposition of objects into parts and subparts and endowing the networks with shape bias. We demonstrated this emergence of shape bias and its functional benefits for different network structures with various datasets. For object recognition convolutional neural networks, the shape bias leads to greater robustness against style and pattern change distraction. For the image synthesis generative adversary networks, the emerged shape bias leads to more coherent and decomposable structures in the synthesized images. Ablation studies suggest that sparse codes tend to encode structures, whereas the more distributed codes tend to favor texture. Our code is host at the github repository: https://topk-shape-bias.github.io/ 
    more » « less
  3. Convolutional neural networks (CNNs) rely on the depth of the architecture to obtain complex features. It results in computationally expensive models for low-resource IoT devices. Convolutional operators are local and restricted in the receptive field, which increases with depth. We explore partial differential equations (PDEs) that offer a global receptive field without the added overhead of maintaining large kernel convolutional filters. We propose a new feature layer, called the Global layer, that enforces PDE constraints on the feature maps, resulting in rich features. These constraints are solved by embedding iterative schemes in the network. The proposed layer can be embedded in any deep CNN to transform it into a shallower network. Thus, resulting in compact and computationally efficient architectures achieving similar performance as the original network. Our experimental evaluation demonstrates that architectures with global layers require 2 − 5× less computational and storage budget without any significant loss in performance 
    more » « less
  4. Visually guided movements can show surprising accuracy even when the perceived three-dimensional (3D) shape of the target is distorted. One explanation of this paradox is that an evolutionarily specialized “vision-for-action” system provides accurate shape estimates by relying selectively on stereo information and ignoring less reliable sources of shape information like texture and shading. However, the key support for this hypothesis has come from studies that analyze average behavior across many visuomotor interactions where available sensory feedback reinforces stereo information. The present study, which carefully accounts for the effects of feedback, shows that visuomotor interactions with slanted surfaces are actually planned using the same cue-combination function as slant perception and that apparent dissociations can arise due to two distinct supervised learning processes: sensorimotor adaptation and cue reweighting. In two experiments, we show that when a distorted slant cue biases perception (e.g., surfaces appear flattened by a fixed amount), sensorimotor adaptation rapidly adjusts the planned grip orientation to compensate for this constant error. However, when the distorted slant cue is unreliable, leading to variable errors across a set of objects (i.e., some slants are overestimated, others underestimated), then relative cue weights are gradually adjusted to reduce the misleading effect of the unreliable cue, consistent with previous perceptual studies of cue reweighting. The speed and flexibility of these two forms of learning provide an alternative explanation of why perception and action are sometimes found to be dissociated in experiments where some 3D shape cues are consistent with sensory feedback while others are faulty. NEW & NOTEWORTHY When interacting with three-dimensional (3D) objects, sensory feedback is available that could improve future performance via supervised learning. Here we confirm that natural visuomotor interactions lead to sensorimotor adaptation and cue reweighting, two distinct learning processes uniquely suited to resolve errors caused by biased and noisy 3D shape cues. These findings explain why perception and action are often found to be dissociated in experiments where some cues are consistent with sensory feedback while others are faulty. 
    more » « less
  5. Key Points A framework merging unsupervised clustering and supervised convolutional neural network (CNN) for lightning classification is developed Clustering of positive polarity energetic lightning radio pulses (>150 kA) identifies three processes: +EIPs (6%–7%), +NBEs, and +CGs CNNs detect 95.2% of manually identified +EIPs with up to 98.7% accuracy, enabling studying EIP‐TGF link with lower peak current (>50 kA) 
    more » « less