skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2120610

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Depth estimation is fundamental to 3D perception, and humans are known to have biased estimates of depth. This study investigates whether convolutional neural networks (CNNs) can be biased when predicting the sign of curvature and depth of surfaces of textured surfaces under different viewing conditions (field of view) and surface parameters (slant and texture irregularity). This hypothesis is drawn from the idea that texture gradients described by local neighborhoods—a cue identified in human vision literature—are also representable within convolutional neural networks. To this end, we trained both unsupervised and supervised CNN models on the renderings of slanted surfaces with random Polka dot patterns and analyzed their internal latent representations. The results show that the unsupervised models have similar prediction biases as humans across all experiments, while supervised CNN models do not exhibit similar biases. The latent spaces of the unsupervised models can be linearly separated into axes representing field of view and optical slant. For supervised models, this ability varies substantially with model architecture and the kind of supervision (continuous slant vs. sign of slant). Even though this study says nothing of any shared mechanism, these findings suggest that unsupervised CNN models can share similar predictions to the human visual system. Code: github.com/brownvc/Slant-CNN-Biases 
    more » « less
  2. How the brain derives 3D information from inherently ambiguous visual input remains the fundamental question of human vision. The past two decades of research have addressed this question as a problem of probabilistic inference, the dominant model being maximum-likelihood estimation (MLE). This model assumes that independent depth-cue modules derive noisy but statistically accurate estimates of 3D scene parameters that are combined through a weighted average. Cue weights are adjusted based on the system representation of each module's output variability. Here I demonstrate that the MLE model fails to account for important psychophysical findings and, importantly, misinterprets the just noticeable difference, a hallmark measure of stimulus discriminability, to be an estimate of perceptual uncertainty. I propose a new theory, termed Intrinsic Constraint, which postulates that the visual system does not derive the most probable interpretation of the visual input, but rather, the most stable interpretation amid variations in viewing conditions. This goal is achieved with the Vector Sum model, which represents individual cue estimates as components of a multi-dimensional vector whose norm determines the combined output. This model accounts for the psychophysical findings cited in support of MLE, while predicting existing and new findings that contradict the MLE model. This article is part of a discussion meeting issue ‘New approaches to 3D vision’. 
    more » « less