Abstract Emission of anthropogenic greenhouse gases has resulted in greater Arctic warming compared to global warming, known as Arctic amplification (AA). From an energy‐balance perspective, the current Arctic climate is in radiative‐advective equilibrium (RAE) regime, in which radiative cooling is balanced by advective heat flux convergence. Exploiting a suite of climate model simulations with varying carbon dioxide () concentrations, we link the northern high‐latitude regime variation and transition to AA. The dominance of RAE regime in northern high‐latitudes under reduction relates to stronger AA, whereas the RAE regime transition to non‐RAE regime under increase corresponds to a weaker AA. Examinations on the spatial and seasonal structures reveal that lapse‐rate and sea‐ice processes are crucial mechanisms. Our findings suggest that if concentration continues to rise, the Arctic could transition into a non‐RAE regime accompanied with a weaker AA.
more »
« less
The emergence of a new wintertime Arctic energy balance regime
Abstract The modern Arctic climate during wintertime is characterized by sea-ice cover, a strong surface temperature inversion, and the absence of convection. Correspondingly, the energy balance in the Arctic atmosphere today is dominated by atmospheric radiative cooling and advective heating, so-called radiative advective equilibrium. Climate change in the Arctic involves sea-ice melt, vanishing of the surface inversion, and emergence of convective precipitation. Here we show climate change in the Arctic involves the emergence of a new energy balance regime characterized by radiative cooling, convective heating, and advective heating, so-called radiative convective advective equilibrium. A time-dependent decomposition of the atmospheric energy balance shows the regime transition is associated with enhanced radiative cooling followed by decreased advective heating. The radiative cooling response consists of a robust clear-sky greenhouse effect and a transient cloud contribution that varies across models. Mechanism-denial experiments in an aquaplanet with and without interactive sea ice highlight the important role of sea-ice melt in both the radiative cooling and advective heating responses. The results show that climate change in the Arctic involves temporally evolving mechanisms, suggesting that an emergent constraint based on historical data or trends may not constrain the long-term response.
more »
« less
- Award ID(s):
- 2033467
- PAR ID:
- 10442608
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research: Climate
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2752-5295
- Page Range / eLocation ID:
- Article No. 031003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Energy balance and lapse rate regimes qualitatively characterize the low, middle, and high latitudes of Earth’s modern climate. Currently we do not have a complete quantitative understanding of the spatiotemporal structure of energy balance regimes [e.g., radiative convective equilibrium (RCE) and radiative advective equilibrium (RAE)] and their connection to lapse rate regimes (moist adiabat and surface inversion). Here we use the vertically integrated moist static energy budget to define a nondimensional number that quantifies where and when RCE and RAE are approximately satisfied in Earth’s modern climate. We find RCE exists year-round in the tropics and in the northern midlatitudes during summertime. RAE exists year-round over Antarctica and in the Arctic with the exception of early summer. We show that lapse rates in RCE and RAE are consistent with moist adiabatic and surface inversion lapse rates, respectively. We use idealized models (energy balance and aquaplanet) to test the following hypotheses: 1) RCE occurs during midlatitude summer for land-like (small heat capacity) surface conditions, and 2) sea ice is necessary for the existence of annual-mean RAE over a polar ocean, such as the Arctic. Consistent with point 1, an aquaplanet configured with a shallow mixed layer transitions to RCE in the midlatitudes during summertime whereas it does not for a deep mixed layer. Furthermore, we confirm point 2 using mechanism-denial aquaplanet experiments with and without thermodynamic sea ice. Finally, we show energy balance regimes of the modern climate provide a useful guide to the vertical structure of the warming response in the annual mean, and seasonally over the tropics and the southern high latitudes.more » « less
-
Abstract Radiative climate feedbacks in the Arctic have been extensively studied, but their spatial and seasonal variations have not been thoroughly examined. Using ERA5 reanalysis data, we examine seasonal variations in Arctic climate feedbacks and their relationship to sea‐ice loss based on changes from 1950–1979 to 1990–2019. The spring and summer seasons experienced large sea‐ice loss, strong surface albedo feedback, and large oceanic heat uptake. Arctic clouds exerted small net cooling in May‐June‐July but moderate warming during the cold season, especially over areas with large sea‐ice loss where cloud liquid and ice water content increased. Arctic water vapor feedback peaked in summer but was weak and uncorrelated with sea‐ice loss. Arctic positive lapse rate feedback (LRF) was strongest in winter over areas with large sea‐ice loss and weak inversion but uncorrelated with atmospheric stability, suggesting that oceanic heating from sea‐ice loss led to enhanced surface warming and the positive LRF.more » « less
-
Abstract Arctic amplification has been attributed predominantly to a positive lapse rate feedback in winter, when boundary layer temperature inversions focus warming near the surface. Predicting high-latitude climate change effectively thus requires identifying the local and remote physical processes that set the Arctic’s vertical warming structure. In this study, we analyze output from the CESM Large Ensemble’s twenty-first-century climate change projection to diagnose the relative influence of two Arctic heating sources, local sea ice loss and remote changes in atmospheric heat transport. Causal effects are quantified with a statistical inference method, allowing us to assess the energetic pathways mediating the Arctic temperature response and the role of internal variability across the ensemble. We find that a step-increase in latent heat flux convergence causes Arctic lower-tropospheric warming in all seasons, while additionally reducing net longwave cooling at the surface. However, these effects only lead to small and short-lived changes in boundary layer inversion strength. By contrast, a step-decrease in sea ice extent in the melt season causes, in fall and winter, surface-amplified warming and weakened boundary layer temperature inversions. Sea ice loss also enhances surface turbulent heat fluxes and cloud-driven condensational heating, which mediate the atmospheric temperature response. While the aggregate effect of many moist transport events and seasons of sea ice loss will be different than the response to hypothetical perturbations, our results nonetheless highlight the mechanisms that alter the Arctic temperature inversion in response to CO2forcing. As sea ice declines, the atmosphere’s boundary layer temperature structure is weakened, static stability decreases, and a thermodynamic coupling emerges between the Arctic surface and the overlying troposphere.more » « less
-
Abstract The Arctic is warming faster than anywhere else on Earth, prompting glacial melt, permafrost thaw, and sea ice decline. These severe consequences induce feedbacks that contribute to amplified warming, affecting weather and climate globally. Aerosols and clouds play a critical role in regulating radiation reaching the Arctic surface. However, the magnitude of their effects is not adequately quantified, especially in the central Arctic where they impact the energy balance over the sea ice. Specifically, aerosols called ice nucleating particles (INPs) remain understudied yet are necessary for cloud ice production and subsequent changes in cloud lifetime, radiative effects, and precipitation. Here, we report observations of INPs in the central Arctic over a full year, spanning the entire sea ice growth and decline cycle. Further, these observations are size-resolved, affording valuable information on INP sources. Our results reveal a strong seasonality of INPs, with lower concentrations in the winter and spring controlled by transport from lower latitudes, to enhanced concentrations of INPs during the summer melt, likely from marine biological production in local open waters. This comprehensive characterization of INPs will ultimately help inform cloud parameterizations in models of all scales.more » « less
An official website of the United States government
