skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genetic approaches to dissect plant nonhost resistance mechanisms
Abstract Nonhost resistance (NHR) refers to the immunity of most tested genotypes of a plant species to most tested variants of a pathogen species. Thus, NHR is broad spectrum and durable in nature and constitutes a major safety barrier against invasion of a myriad of potentially pathogenic microbes in any plants including domesticated crops. Genetic study of NHR is generally more difficult compared to host resistance mainly because NHR is genetically more complicated and often lacks intraspecific polymorphisms. Nevertheless, substantial progress has been made towards the understanding of the molecular basis of NHR in the past two decades using various approaches. Not surprisingly, molecular mechanisms of NHR revealed so far encompasses pathogen‐associated molecular pattern‐triggered immunity and effector‐triggered immunity. In this review, we briefly discuss the inherent difficulty in genetic studies of NHR and summarize the main approaches that have been taken to identify genes contributing to NHR. We also discuss new enabling strategies for dissecting multilayered NHR in model plants with a focus on NHR against filamentous pathogens, especially biotrophic pathogens such as powdery mildew and rust fungi.  more » « less
Award ID(s):
2224203 1901566 2224205
PAR ID:
10442609
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Plant Pathology
Volume:
24
Issue:
3
ISSN:
1464-6722
Page Range / eLocation ID:
p. 272-283
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogenPseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI againstP. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporterLysineHistidineTransporter1(LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens. 
    more » « less
  2. Abstract The evolution of host immunity occurs in the context of the microbiome, but little theory exists to predict how resistance against pathogens might be influenced by the need to tolerate and regulate commensal microbiota. We present a general model to explore the optimal investment in host immunity under conditions in which the host can, versus cannot easily distinguish among commensal versus pathogenic bacteria, and when commensal microbiota can, versus cannot protect the host against the impacts of pathogen infection. We find that a loss of immune vigilance associated with innate immunity over evolutionary time can occur due to the challenge of discriminating between pathogenic and other microbe species. Further, we find the greater the protective effect of microbiome species, acting either directly or via competition with a pathogen, or the higher the costs of immunity, the more likely the loss of immune vigilance is. Conversely, this effect can be reversed when pathogens increase host mortality. Generally, the magnitude of costs of immunity required to allow evolution of decreased immune vigilance are predicted to be lowest when microbiome and pathogen species most resemble each other (in terms of host recognition), and when immune effects on the pathogen are weak. Our model framework makes explicit the core trade-offs likely to shape the evolution of immunity in the context of microbiome/pathogen discrimination. We discuss how this informs interpretation of patterns and process in natural systems, including vulnerability to pathogen emergence. 
    more » « less
  3. Summary Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over‐ or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plantArabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock‐down ofTaMKP1by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused byPuccinia striiformisf. sp.tritici(Pst) and powdery mildew caused byBlumeria graminisf. sp.tritici(Bgt), indicating thatTaMKP1negatively regulates disease resistance in wheat. Unexpectedly, whileTamkp1mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild‐type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK‐mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield. 
    more » « less
  4. Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host–pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host–pathogen interface are discussed. 
    more » « less
  5. Abstract Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1–yellow fluorescent protein and PEN2–green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants. 
    more » « less