skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leaf abaxial immunity to powdery mildew in Arabidopsis is conferred by multiple defense mechanisms
Abstract Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1–yellow fluorescent protein and PEN2–green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants.  more » « less
Award ID(s):
2224203 1901566 2224205
PAR ID:
10477927
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Experimental Botany
ISSN:
0022-0957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Eudicot plant species have leaves with two surfaces: the lower abaxial and the upper adaxial surface. Each surface varies in a diversity of components and molecular signals, resulting in potentially different degrees of resistance to pathogens. We tested howBotrytis cinerea, a necrotroph fungal pathogen, interacts with the two different leaf surfaces across 16 crop species and 20 Arabidopsis genotypes. This showed that the abaxial surface is generally more susceptible to the pathogen than the adaxial surface. In Arabidopsis, the differential lesion area between leaf surfaces was associated with jasmonic acid (JA) and salicylic acid (SA) signaling and differential induction of defense chemistry across the two surfaces. When infecting the adaxial surface, leaves mounted stronger defenses by producing more glucosinolates and camalexin defense compounds, partially explaining the differential susceptibility across surfaces. Testing a collection of 96B. cinereastrains showed the genetic heterogeneity of growth patterns, with a few strains preferring the adaxial surface while most are more virulent on the abaxial surface. Overall, we show that leaf–Botrytis interactions are complex with host‐specific, surface‐specific, and strain‐specific patterns. 
    more » « less
  2. Abstract In Arabidopsis thaliana, the POWDERY MILDEW RESISTANT4 (PMR4)/GLUCAN SYNTHASE LIKE5 (GSL5) callose synthase is required for pathogen-induced callose deposition in cell wall defense. Paradoxically, pmr4/gsl5 mutants exhibit strong resistance to both powdery and downy mildew. The powdery mildew resistance of pmr4/gsl5 has been attributed to upregulated salicylic acid (SA) signaling based on its dependance on PHYTOALEXIN DEFICIENT4 (PAD4), which controls SA accumulation, and its abolishment by bacterial NahG salicylate hydroxylase. Our study revealed that disruption of PMR4/GSL5 also leads to early senescence. Suppressor analysis uncovered that PAD4 and N-hydroxypipecolic acid (NHP) biosynthetic genes ABERRANT GROWTH AND DEATH2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and FLAVIN-DEPENDENT MONOXYGENASE1 (FMO1) are required for early senescence of pmr4/gsl5 mutants. The critical role of NHP in the early senescence of pmr4/gsl5 was supported by greatly increased accumulation of pipecolic acid in pmr4/gsl5 mutants. In contrast, disruption of the SA biosynthetic gene ISOCHORISMATE SYNTHASE1/SA-INDUCTION DIFFICIENT 2 (ICS1/SID2), which greatly reduces SA accumulation, had little effect on impaired growth of pmr4/gsl5. Furthermore, while disruption of PAD4 completely abolished the powdery mildew resistance in pmr4/gsl5, mutations in ICS1/SID2, ALD1, or FMO1 had only a minor effect on the resistance of the mutant plants. However, disruption of both ICS1/SID2 and FMO1 abolished the enhanced immunity of the callose synthase mutants against the fungal pathogen. Therefore, while NHP plays a crucial role in the early senescence of pmr4/gsl5 mutants, both SA and NHP have important roles in the strong powdery mildew resistance induced by the loss of the callose synthase. 
    more » « less
  3. Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 physically associated with RPW8.2 with its RING finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase of RPW8.2 in the nucleus. In turn, the nucleus-localised RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity. 
    more » « less
  4. Summary Biotrophic pathogens are believed to strategically manipulate sugar transport in host cells to enhance their access to carbohydrates. However, mechanisms of sugar translocation from host cells to biotrophic fungi such as powdery mildew across the plant–haustorium interface remain poorly understood.To investigate this question, systematic subcellular localisation analysis was performed for all the 14 members of the monosaccharide sugar transporter protein (STP) family inArabidopsis thaliana. The best candidate AtSTP8 was further characterised for its transport properties inSaccharomyces cerevisiaeand potential role in powdery mildew infection by gene ablation and overexpression in Arabidopsis.Our results showed that AtSTP8 was mainly localised to the endoplasmic reticulum (ER) and appeared to be recruited to the host‐derived extrahaustorial membrane (EHM) induced by powdery mildew. Functional complementation assays inS. cerevisiaesuggested that AtSTP8 can transport a broad spectrum of hexose substrates. Moreover, transgenic Arabidopsis plants overexpressingAtSTP8showed increased hexose concentration in leaf tissues and enhanced susceptibility to powdery mildew.Our data suggested that the ER‐localised sugar transporter AtSTP8 may be recruited to the EHM where it may be involved in sugar acquisition by haustoria of powdery mildew from host cells in Arabidopsis. 
    more » « less
  5. Abstract Plant innate immunity relies on nucleotide binding leucine-rich repeat receptors (NLRs) that recognize pathogen-derived molecules and activate downstream signaling pathways. We analyzed the variation in NLR gene copy number and identified plants with a low number of NLR genes relative to sister species. We specifically focused on four plants from two distinct lineages, one monocot lineage (Alismatales) and one eudicot lineage (Lentibulariaceae). In these lineages, the loss of NLR genes coincides with loss of the well-known downstream immune signaling complex ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)/PHYTOALEXIN DEFICIENT 4 (PAD4). We expanded our analysis across whole proteomes and found that other characterized immune genes were absent only in Lentibulariaceae and Alismatales. Additionally, we identified genes of unknown function that were convergently lost together with EDS1/PAD4 in five plant species. Gene expression analyses in Arabidopsis (Arabidopsis thaliana) and Oryza sativa revealed that several homologs of the candidates are differentially expressed during pathogen infection, drought, and abscisic acid treatment. Our analysis provides evolutionary evidence for the rewiring of plant immunity in some plant lineages, as well as the coevolution of the EDS1/PAD4 pathway and drought responses. 
    more » « less