skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Market Segmentation Trees
Problem definition: We seek to provide an interpretable framework for segmenting users in a population for personalized decision making. Methodology/results: We propose a general methodology, market segmentation trees (MSTs), for learning market segmentations explicitly driven by identifying differences in user response patterns. To demonstrate the versatility of our methodology, we design two new specialized MST algorithms: (i) choice model trees (CMTs), which can be used to predict a user’s choice amongst multiple options, and (ii) isotonic regression trees (IRTs), which can be used to solve the bid landscape forecasting problem. We provide a theoretical analysis of the asymptotic running times of our algorithmic methods, which validates their computational tractability on large data sets. We also provide a customizable, open-source code base for training MSTs in Python that uses several strategies for scalability, including parallel processing and warm starts. Finally, we assess the practical performance of MSTs on several synthetic and real-world data sets, showing that our method reliably finds market segmentations that accurately model response behavior. Managerial implications: The standard approach to conduct market segmentation for personalized decision making is to first perform market segmentation by clustering users according to similarities in their contextual features and then fit a “response model” to each segment to model how users respond to decisions. However, this approach may not be ideal if the contextual features prominent in distinguishing clusters are not key drivers of response behavior. Our approach addresses this issue by integrating market segmentation and response modeling, which consistently leads to improvements in response prediction accuracy, thereby aiding personalization. We find that such an integrated approach can be computationally tractable and effective even on large-scale data sets. Moreover, MSTs are interpretable because the market segments can easily be described by a decision tree and often require only a fraction of the number of market segments generated by traditional approaches. Disclaimer: This work was done prior to Ryan McNellis joining Amazon. Funding: This work was supported by the National Science Foundation [Grants CMMI-1763000 and CMMI-1944428]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2023.1195 .  more » « less
Award ID(s):
1763000 1944428
PAR ID:
10442643
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Manufacturing & Service Operations Management
Volume:
25
Issue:
2
ISSN:
1523-4614
Page Range / eLocation ID:
648 to 667
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Network-based analyses have effectively understood customer preferences through interactions between customers and products, particularly for tailored product design. However, research applying this analysis to diverse customers with varied preferences is limited. This paper introduces a market-segmented network modeling approach, guided by customer preference, to explore heterogeneity in customers’ two-stage decision-making process: consideration-then-choice. In heterogeneous markets, customers with similar characteristics or purchasing similar products can exhibit different decision-making processes. Therefore, this method segments customers based on preferences rather than just characteristics, allowing for more accurate choice modeling. Using joint correspondence analysis, we identify associations between customer attributes and preferred products, characterizing market segments through clustering. We then build individual bipartite customer–product networks and apply the exponential random graph model to compare the product features influencing customer considerations and choices in various market segments. Using a US household vacuum cleaner survey, our method detected different customer preferences for the same product attribute at different decision-making stages. The market-segmentation model outperforms the non-segmented benchmark in prediction, highlighting its accuracy in predicting varied customer behaviors. This study underscores the vital role of preference-guided segmentation in product design, illustrating how understanding customer preferences at different decision stages can inform and refine design strategies, ensuring products align with diverse market needs. 
    more » « less
  2. Delays in response to mobile messages can cause negative emotions in message senders and can affect an individual's social relationships. Recipients, too, feel a pressure to respond even during inopportune moments. A messaging assistant which could respond with relevant contextual information on behalf of individuals while they are unavailable might reduce the pressure to respond immediately and help put the sender at ease. By modelling attentiveness to messaging, we aim to (1) predict instances when a user is not able to attend to an incoming message within reasonable time and (2) identify what contextual factors can explain the user's attentiveness---or lack thereof---to messaging. In this work, we investigate two approaches to modelling attentiveness: a general approach in which data from a group of users is combined to form a single model for all users; and a personalized approach, in which an individual model is created for each user. Evaluating both models, we observed that on average, with just seven days of training data, the personalized model can outperform the generalized model in terms of both accuracy and F-measure for predicting inattentiveness. Further, we observed that in majority of cases, the messaging patterns identified by the attentiveness models varied widely across users. For example, the top feature in the generalized model appeared in the top five features for only 41% of the individual personalized models. 
    more » « less
  3. Identifying instances when a user will not able to attend to an incoming message and constructing an auto-response with relevant contextual information may help reduce social pressures to immediately respond that many users face. Mobile messaging behavior often varies from one person to another. As a result, compared to a generic model considering profiles of several users, a personalized model can capture a user's messaging behavior more accurately to predict their inattentive states. However, creating accurate personalized models requires a non-trivial amount of individual data, which is often not available for new users. In this work, we investigate a weighted hybrid approach to model users' attention to messaging. Through dynamic performance-based weighting, we combine the predictions of three types of models, a general model, a group model and a personalized model to create an approach which can work through the lack of initial data while adapting to the user's behavior. We present the details of our modeling approach and the evaluation of the model with over three weeks of data from 274 users. Our results highlight the value of hybrid weighted modeling to predict when a user cannot attend to their messages. 
    more » « less
  4. Abstract Contemporary approaches to instance segmentation in cell science use 2D or 3D convolutional networks depending on the experiment and data structures. However, limitations in microscopy systems or efforts to prevent phototoxicity commonly require recording sub-optimally sampled data that greatly reduces the utility of such 3D data, especially in crowded sample space with significant axial overlap between objects. In such regimes, 2D segmentations are both more reliable for cell morphology and easier to annotate. In this work, we propose the projection enhancement network (PEN), a novel convolutional module which processes the sub-sampled 3D data and produces a 2D RGB semantic compression, and is trained in conjunction with an instance segmentation network of choice to produce 2D segmentations. Our approach combines augmentation to increase cell density using a low-density cell image dataset to train PEN, and curated datasets to evaluate PEN. We show that with PEN, the learned semantic representation in CellPose encodes depth and greatly improves segmentation performance in comparison to maximum intensity projection images as input, but does not similarly aid segmentation in region-based networks like Mask-RCNN. Finally, we dissect the segmentation strength against cell density of PEN with CellPose on disseminated cells from side-by-side spheroids. We present PEN as a data-driven solution to form compressed representations of 3D data that improve 2D segmentations from instance segmentation networks. 
    more » « less
  5. Abstract Facing the escalating effects of climate change, it is critical to improve the prediction and understanding of the hurricane evacuation decisions made by households in order to enhance emergency management. Current studies in this area often have relied on psychology-driven linear models, which frequently exhibited limitations in practice. The present study proposed a novel interpretable machine learning approach to predict household-level evacuation decisions by leveraging easily accessible demographic and resource-related predictors, compared to existing models that mainly rely on psychological factors. An enhanced logistic regression model (that is, an interpretable machine learning approach) was developed for accurate predictions by automatically accounting for nonlinearities and interactions (that is, univariate and bivariate threshold effects). Specifically, nonlinearity and interaction detection were enabled by low-depth decision trees, which offer transparent model structure and robustness. A survey dataset collected in the aftermath of Hurricanes Katrina and Rita, two of the most intense tropical storms of the last two decades, was employed to test the new methodology. The findings show that, when predicting the households’ evacuation decisions, the enhanced logistic regression model outperformed previous linear models in terms of both model fit and predictive capability. This outcome suggests that our proposed methodology could provide a new tool and framework for emergency management authorities to improve the prediction of evacuation traffic demands in a timely and accurate manner. 
    more » « less