- Award ID(s):
- 2051186
- NSF-PAR ID:
- 10417513
- Date Published:
- Journal Name:
- Proceedings of the International Joint Conference on Neural Networks
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Human decision making behavior is observed with choice-response time data during psychological experiments. Drift-diffusion models of this data consist of a Wiener first-passage time (WFPT) distribution and are described by cognitive parameters: drift rate, boundary separation, and starting point. These estimated parameters are of interest to neuroscientists as they can be mapped to features of cognitive processes of decision making (such as speed, caution, and bias) and related to brain activity. The observed patterns of RT also reflect the variability of cognitive processes from trial to trial mediated by neural dynamics. We adapted a SincNet-based shallow neural network architecture to fit the Drift-Diffusion model using EEG signals on every experimental trial. The model consists of a SincNet layer, a depthwise spatial convolution layer, and two separate fully connected layers that predict drift rate and boundary for each trial in-parallel. The SincNet layer parametrized the kernels in order to directly learn the low and high cutoff frequencies of bandpass filters that are applied to the EEG data to predict drift and boundary parameters. During training, model parameters were updated by minimizing the negative log likelihood function of WFPT distribution given trial RT. We developed separate decision SincNet models for each participant performing a two-alternative forced-choice task by discriminating whether a Gabor patch presented with noise is high or low spatial frequency. Our results showed that single-trial estimates of drift and boundary performed better at predicting RTs than the median estimates in both training and test data sets, suggesting that our model can successfully use EEG features to estimate meaningful single-trial Diffusion model parameters. Furthermore the shallow SincNet architecture identified time windows of information processing related to evidence accumulation and caution and the EEG frequency bands that reflect these processes within each participant.more » « less
-
null (Ed.)If our choices make us who we are, then what does that mean when these choices are made in the human-machine interface? Developing a clear understanding of how human decision making is influenced by automated systems in the environment is critical because, as human-machine interfaces and assistive robotics become even more ubiquitous in everyday life, many daily decisions will be an emergent result of the interactions between the human and the machine – not stemming solely from the human. For example, choices can be influenced by the relative locations and motor costs of the response options, as well as by the timing of the response prompts. In drift diffusion model simulations of response-prompt timing manipulations, we find that it is only relatively equibiased choices that will be successfully influenced by this kind of perturbation. However, with drift diffusion model simulations of motor cost manipulations, we find that even relatively biased choices can still show some influence of the perturbation. We report the results of a two-alternative forced-choice experiment with a computer mouse modified to have a subtle velocity bias in a pre-determined direction for each trial, inducing an increased motor cost to move the cursor away from the pre-designated target direction. With queries that have each been normed in advance to be equibiased in people’s preferences, the participant will often begin their mouse movement before their cognitive choice has been finalized, and the directional bias in the mouse velocity exerts a small but significant influence on their final choice. With queries that are not equibiased, a similar influence is observed. By exploring the synergies that are developed between humans and machines and tracking their temporal dynamics, this work aims to provide insight into our evolving decisions.more » « less
-
The mnemonic discrimination task (MDT) is a widely used cognitive assessment tool. Performance in this task is believed to indicate an age-related deficit in episodic memory stemming from a decreased ability to pattern-separate among similar experiences. However, cognitive processes other than memory ability might impact task performance. In this study, we investigated whether nonmnemonic decision-making processes contribute to the age-related deficit in the MDT. We applied a hierarchical Bayesian version of the Ratcliff diffusion model to the MDT performance of 26 younger and 31 cognitively normal older adults. It allowed us to decompose decision behavior in the MDT into different underlying cognitive processes, represented by specific model parameters. Model parameters were compared between groups, and differences were evaluated using the Bayes factor. Our results suggest that the age-related decline in MDT performance indicates a predominantly mnemonic deficit rather than differences in nonmnemonic decision-making processes. In addition, this mnemonic deficit might also involve a slowing in processes related to encoding and retrieval strategies, which are relevant for successful memory as well. These findings help to better understand what cognitive processes contribute to the age-related decline in MDT performance and may help to improve the diagnostic value of this popular task.more » « less
-
Abstract Social decision making involves balancing conflicts between selfishness and pro-sociality. The cognitive processes underlying such decisions are not well understood, with some arguing for a single comparison process, while others argue for dual processes (one intuitive and one deliberative). Here, we propose a way to reconcile these two opposing frameworks. We argue that behavior attributed to intuition can instead be seen as a starting point bias of a sequential sampling model (SSM) process, analogous to a prior in a Bayesian framework. Using mini-dictator games in which subjects make binary decisions about how to allocate money between themselves and another participant, we find that pro-social subjects become more pro-social under time pressure and less pro-social under time delay, while selfish subjects do the opposite. Our findings help reconcile the conflicting results concerning the cognitive processes of social decision making and highlight the importance of modeling the dynamics of the choice process.
-
Prior expectations can bias how we perceive pain. Using a drift diffusion model, we recently showed that this influence is primarily based on changes in perceptual decision-making (indexed as shift in starting point). Only during unexpected application of high-intensity noxious stimuli, altered information processing (indexed as increase in drift rate) explained the expectancy effect on pain processing. Here, we employed functional magnetic resonance imaging to investigate the neural basis of both these processes in healthy volunteers. On each trial, visual cues induced the expectation of high- or low-intensity noxious stimulation or signaled equal probability for both intensities. Participants categorized a subsequently applied electrical stimulus as either low- or high-intensity pain. A shift in starting point towards high pain correlated negatively with right dorsolateral prefrontal cortex activity during cue presentation underscoring its proposed role of “keeping pain out of mind”. This anticipatory right dorsolateral prefrontal cortex signal increase was positively correlated with periaqueductal gray (PAG) activity when the expected high-intensity stimulation was applied. A drift rate increase during unexpected high-intensity pain was reflected in amygdala engagement and increased functional connectivity between amygdala and PAG. Our findings suggest involvement of the PAG in both decision-making bias and altered information processing to implement expectancy effects on pain.more » « less