skip to main content


This content will become publicly available on August 1, 2024

Title: Buoyant magnetic milliswimmers reveal design rules for optimizing microswimmer performance
Magnetically-actuated swimming microrobots are an emerging tool for navigating and manipulating materials in confined spaces. Recent work has demonstrated that it is possible to build such systems at the micro and nanoscales using polymer microspheres, magnetic particles and DNA nanotechnology. However, while these materials enable an unprecedented ability to build at small scales, such systems often demonstrate significant polydispersity resulting from both the material variations and the assembly process itself. This variability makes it difficult to predict, let alone optimize, the direction or magnitude of microswimmer velocity from design parameters such as link shape or aspect ratio. To isolate questions of a swimmer's design from variations in its physical dimensions, we present a novel experimental platform using two-photon polymerization to build a two-link, buoyant milliswimmer with a fully customizable shape and integrated flexible linker (the swimmer is underactuated, enabling asymmetric cyclic motion and net translation). Our approach enables us to control both swimming direction and repeatability of swimmer performance. These studies provide ground truth data revealing that neither the first order nor second order models currently capture the key features of milliswimmer performance. We therefore use our experimental platform to develop design guidelines for tuning the swimming speeds, and we identify the following three approaches for increasing speed: (1) tuning the actuation frequency for a fixed aspect ratio, (2) adjusting the aspect ratio given a desired range of operating frequencies, and (3) using the weaker value of linker stiffness from among the values that we tested, while still maintaining a robust connection between the links. We also find experimentally that spherical two-link swimmers with dissimilar link diameters achieve net velocities comparable to swimmers with cylindrical links, but that two-link spherical swimmers of equal diameter do not.  more » « less
Award ID(s):
2132886 1739308
NSF-PAR ID:
10442644
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
ISSN:
2040-3364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Small-scale robots have the potential to impact many areas of medicine and manufacturing including targeted drug delivery, telemetry and micromanipulation. This paper develops an algorithmic framework for regulating external magnetic fields to induce motion in millimeter-scale robots in a viscous liquid, to simulate the physics of swimming at the micrometer scale. Our approach for planning motions for these swimmers is based on tools from geometric mechanics that provide a novel means to design periodic changes in the physical shape of a robot that propels it in a desired direction. Using these tools, we are able to derive new motion primitives for generating locomotion in these swimmers. We use these primitives for optimizing swimming efficiency as a function of its internal magnetization and describe a principled approach to encode the best magnetization distribu- tions in the swimmers. We validate this procedure experimentally and conclude by implementing these newly computed motion primitives on several magnetic swimmer prototypes that include two-link and three-link swimmers. 
    more » « less
  2. Biological and artificial microswimmers often encounter fluid media with non-Newtonian rheological properties. In particular, many biological fluids such as blood and mucus are shear-thinning. Recent studies have demonstrated how shear-thinning rheology can impact substantially the propulsion performance in different manners. In this work, we examine the effect of geometrical shape upon locomotion in a shear-thinning fluid using a prolate spheroidal squirmer model. We use a combination of asymptotic analysis and numerical simulations to quantify how particle geometry impacts the speed and the energetic cost of swimming. The results demonstrate the advantages of spheroidal over spherical swimmers in terms of both swimming speed and energetic efficiency when squirming through a shear-thinning fluid. More generally, the findings suggest the possibility of tuning the swimmer geometry to better exploit non-Newtonian rheological behaviours for more effective locomotion in complex fluids. 
    more » « less
  3. The use of machine learning techniques in the development of microscopic swimmers has drawn considerable attention in recent years. In particular, reinforcement learning has been shown useful in enabling swimmers to learn effective propulsion strategies through its interactions with the surroundings. In this work, we apply a reinforcement learning approach to identify swimming gaits of a multi-link model swimmer. The swimmer consists of multiple rigid links connected serially with hinges, which can rotate freely to change the relative angles between neighboring links. Purcell [“Life at low Reynolds number,” Am. J. Phys. 45, 3 (1977)] demonstrated how the particular case of a three-link swimmer (now known as Purcell's swimmer) can perform a prescribed sequence of hinge rotation to generate self-propulsion in the absence of inertia. Here, without relying on any prior knowledge of low-Reynolds-number locomotion, we first demonstrate the use of reinforcement learning in identifying the classical swimming gaits of Purcell's swimmer for case of three links. We next examine the new swimming gaits acquired by the learning process as the number of links increases. We also consider the scenarios when only a single hinge is allowed to rotate at a time and when simultaneous rotation of multiple hinges is allowed. We contrast the difference in the locomotory gaits learned by the swimmers in these scenarios and discuss their propulsion performance. Taken together, our results demonstrate how a simple reinforcement learning technique can be applied to identify both classical and new swimming gaits at low Reynolds numbers. 
    more » « less
  4. Many biological microswimmers locomote by periodically beating the densely packed cilia on their cell surface in a wave-like fashion. While the swimming mechanisms of ciliated microswimmers have been extensively studied both from the analytical and the numerical point of view, optimisation of the ciliary motion of microswimmers has received limited attention, especially for non-spherical shapes. In this paper, using an envelope model for the microswimmer, we numerically optimise the ciliary motion of a ciliate with an arbitrary axisymmetric shape. Forward solutions are found using a fast boundary-integral method, and the efficiency sensitivities are derived using an adjoint-based method. Our results show that a prolate microswimmer with a $2\,{:}\,1$ aspect ratio shares similar optimal ciliary motion as the spherical microswimmer, yet the swimming efficiency can increase two-fold. More interestingly, the optimal ciliary motion of a concave microswimmer can be qualitatively different from that of the spherical microswimmer, and adding a constraint to the cilia length is found to improve, on average, the efficiency for such swimmers. 
    more » « less
  5. We investigate a model for the dynamics of ellipsoidal microswimmers in an externally imposed, laminar Kolmogorov flow. Through a phase-space analysis of the dynamics without noise, we find that swimmers favor either cross-stream or rotational drift, depending on their swimming speed and aspect ratio. When including noise, i.e., rotational diffusion, we find that swimmers are driven into certain parts of phase space, leading to a nonuniform steady-state distribution. This distribution exhibits a transition from swimmer aggregation in low-shear regions of the flow to aggregation in high-shear regions as the swimmer’s speed, aspect ratio, and rotational diffusivity are varied. To explain the nonuniform phase-space distribution of swimmers, we apply a weak-noise averaging principle that produces a reduced description of the stochastic swimmer dynamics. Using this technique, we find that certain swimmer trajectories are more favorable than others in the presence of weak rotational diffusion. By combining this information with the phase-space speed of swimmers along each trajectory, we predict the regions of phase space where swimmers tend to accumulate. The results of the averaging technique are in good agreement with direct calculations of the steady-state distributions of swimmers. In particular, our analysis explains the transition from low-shear to high-shear aggregation. 
    more » « less