Magnetically-actuated swimming microrobots are an emerging tool for navigating and manipulating materials in confined spaces. Recent work has demonstrated that it is possible to build such systems at the micro and nanoscales using polymer microspheres, magnetic particles and DNA nanotechnology. However, while these materials enable an unprecedented ability to build at small scales, such systems often demonstrate significant polydispersity resulting from both the material variations and the assembly process itself. This variability makes it difficult to predict, let alone optimize, the direction or magnitude of microswimmer velocity from design parameters such as link shape or aspect ratio. To isolate questions of a swimmer's design from variations in its physical dimensions, we present a novel experimental platform using two-photon polymerization to build a two-link, buoyant milliswimmer with a fully customizable shape and integrated flexible linker (the swimmer is underactuated, enabling asymmetric cyclic motion and net translation). Our approach enables us to control both swimming direction and repeatability of swimmer performance. These studies provide ground truth data revealing that neither the first order nor second order models currently capture the key features of milliswimmer performance. We therefore use our experimental platform to develop design guidelines for tuning the swimming speeds, and we identify the following three approaches for increasing speed: (1) tuning the actuation frequency for a fixed aspect ratio, (2) adjusting the aspect ratio given a desired range of operating frequencies, and (3) using the weaker value of linker stiffness from among the values that we tested, while still maintaining a robust connection between the links. We also find experimentally that spherical two-link swimmers with dissimilar link diameters achieve net velocities comparable to swimmers with cylindrical links, but that two-link spherical swimmers of equal diameter do not.
more »
« less
Motion Planning, Design Optimization and Fabrication of Ferromagnetic Swimmers
Small-scale robots have the potential to impact many areas of medicine and manufacturing including targeted drug delivery, telemetry and micromanipulation. This paper develops an algorithmic framework for regulating external magnetic fields to induce motion in millimeter-scale robots in a viscous liquid, to simulate the physics of swimming at the micrometer scale. Our approach for planning motions for these swimmers is based on tools from geometric mechanics that provide a novel means to design periodic changes in the physical shape of a robot that propels it in a desired direction. Using these tools, we are able to derive new motion primitives for generating locomotion in these swimmers. We use these primitives for optimizing swimming efficiency as a function of its internal magnetization and describe a principled approach to encode the best magnetization distribu- tions in the swimmers. We validate this procedure experimentally and conclude by implementing these newly computed motion primitives on several magnetic swimmer prototypes that include two-link and three-link swimmers.
more »
« less
- Award ID(s):
- 1739308
- PAR ID:
- 10320825
- Date Published:
- Journal Name:
- Robotics science and systems
- ISSN:
- 2330-765X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Swimming at low Reynolds number is typically dominated by a large viscous drag, therefore microscale swimmers require non-reciprocal body deformation to generate locomotion. Purcell described a simple mechanical swimmer at the microscale consisting of three rigid components connected together with two hinges. Here we present a simple microswimmer consisting of two rigid paramagnetic particles with different sizes. When placed in an eccentric magnetic field, this simple microswimmer exhibits non-reciprocal body motion and its swimming locomotion can be directed in a controllable manner. Additional components can be added to create a multibody microswimmer, whereby the particles act cooperatively and translate in a given direction. For some multibody swimmers, the stochastic thermal forces fragment the arm, which therefore modifies the swimming strokes and changes the locomotive speed. This work offers insight into directing the motion of active systems with novel time-varying magnetic fields. It also reveals that Brownian motion not only affects the locomotion of reciprocal swimmers that are subject to the Scallop theorem, but also affects that of non-reciprocal swimmers.more » « less
-
Abstract—This work demonstrates a novel approach to steering a magnetic swimming robot in two dimensions with a single pair of Maxwell coils. By leveraging the curvature of the magnetic field gradient, we achieve motion along two axes. This method allows us to control medical magnetic robots using only existing MRI technology, without requiring additional hard- ware or posing any additional risk to the patient. We implement a switching time optimization algorithm which generates a schedule of control inputs that direct the swimming robot to a goal location in the workspace. By alternating the direction of the magnetic field gradient produced by the single pair of coils per this schedule, we are able to move the swimmer to desired points in two dimensions. Finally, we demonstrate the feasibility of our approach with an experimental implementation on the millimeter scale and discuss future opportunities to expand this work to the microscale, as well as other control problems and real-world applications.more » « less
-
Abstract—This work demonstrates a novel approach to steering a magnetic swimming robot in two dimensions with a single pair of Maxwell coils. By leveraging the curvature of the magnetic field gradient, we achieve motion along two axes. This method allows us to control medical magnetic robots using only existing MRI technology, without requiring additional hard- ware or posing any additional risk to the patient. We implement a switching time optimization algorithm which generates a schedule of control inputs that direct the swimming robot to a goal location in the workspace. By alternating the direction of the magnetic field gradient produced by the single pair of coils per this schedule, we are able to move the swimmer to desired points in two dimensions. Finally, we demonstrate the feasibility of our approach with an experimental implementation on the millimeter scale and discuss future opportunities to expand this work to the microscale, as well as other control problems and real-world applications.more » « less
-
Microorganisms often move through viscoelastic environments, as biological fluids frequently have a rich microstructure owing to the presence of large polymeric molecules. Research on the effect of fluid elasticity on the swimming kinematics of these organisms has usually been focused on those that move via cilia or flagellum. Experimentally, Shen (X. N. Shen et al. , Phys. Rev. Lett. , 2011, 106 , 208101) reported that the nematode C. elegans , a model organism used to study undulatory motion, swims more slowly as the Deborah number describing the fluid's elasticity is increased. This phenomenon has not been thoroughly studied via a fully resolved three-dimensional simulation; moreover, the effect of fluid elasticity on the swimming speed of organisms moving via euglenoid movement, such as E. gracilis , is completely unknown. In this study, we discuss the simulation of the arbitrary motion of an undulating or pulsating swimmer that occupies finite volume in three dimensions, with the ability to specify any differential viscoelastic rheological model for the surrounding fluid. To accomplish this task, we use a modified version of the Immersed Finite Element Method presented in a previous paper by Guido and Saadat in 2018 (A. Saadat et al. , Phys. Rev. E , 2018, 98 , 063316). In particular, this version allows for the simulation of deformable swimmers such that they evolve through an arbitrary set of specified shapes via a conformation-driven force. From our analysis, we observe several key trends not found in previous two-dimensional simulations or theoretical analyses for C. elegans , as well as novel results for the amoeboid motion. In particular, we find that regions of high polymer stress concentrated at the head and tail of the swimming C. elegans are created by strong extensional flow fields and are associated with a decrease in swimming speed for a given swimming stroke. In contrast, in two dimensions these regions of stress are commonly found distributed along the entire body, likely owing to the lack of a third dimension for polymer relaxation. A comparison of swim speeds shows that the calculations in two-dimensional simulations result in an over-prediction of the speed reduction. We believe that our simulation tool accurately captures the swimming motion of the two aforementioned model swimmers and furthermore, allows for the simulation of multiple deformable swimmers, as well as more complex swimming geometries. This methodology opens many new possibilities for future studies of swimmers in viscoelastic fluids.more » « less
An official website of the United States government

