ABSTRACT Organisms such as jumping froghopper insects and punching mantis shrimp use spring-based propulsion to achieve fast motion. Studies of elastic mechanisms have primarily focused on fully developed and functional mechanisms in adult organisms. However, the ontogeny and development of these mechanisms can provide important insights into the lower size limits of spring-based propulsion, the ecological or behavioral relevance of ultrafast movement, and the scaling of ultrafast movement. Here, we examined the development of the spring-latch mechanism in the bigclaw snapping shrimp, Alpheus heterochaelis (Alpheidae). Adult snapping shrimp use an enlarged claw to produce high-speed strikes that generate cavitation bubbles. However, until now, it was unclear when the elastic mechanism emerges during development and whether juvenile snapping shrimp can generate cavitation at this size. We reared A. heterochaelis from eggs, through their larval and postlarval stages. Starting 1 month after hatching, the snapping shrimp snapping claw gradually developed a spring-actuated mechanism and began snapping. We used high-speed videography (300,000 frames s−1) to measure juvenile snaps. We discovered that juvenile snapping shrimp generate the highest recorded accelerations (5.8×105±3.3×105 m s−2) for repeated-use, underwater motion and are capable of producing cavitation at the millimeter scale. The angular velocity of snaps did not change as juveniles grew; however, juvenile snapping shrimp with larger claws produced faster linear speeds and generated larger, longer-lasting cavitation bubbles. These findings establish the development of the elastic mechanism and cavitation in snapping shrimp and provide insights into early life-history transitions in spring-actuated mechanisms.
more »
« less
Tradeoffs explain scaling, sex differences, and seasonal oscillations in the remarkable weapons of snapping shrimp (Alpheus spp.)
From deer antlers to crab claws, weapons are some of the most elaborate and enormous structures in the animal kingdom. Within a species, weapon size generally increases with the size and condition of an individual, and those with larger weapons are usually better at fending off more diminutive competitors. Although it may seem desirable for all individuals to have large weapons, size varies greatly within a species. The ‘handicap principle’ proposes that the cost of bearing a weapon dictates the variation in weapon size. Smaller or less fit individuals pay more for weapons than larger or fitter animals, so smaller individuals tend to grow smaller weapons. Although popular, only a handful of studies have demonstrated experimental evidence that supports this theory. To test the handicap principle, Dinh and Patek studied a group of crustaceans known as snapping shrimp. Each shrimp has one enlarged claw that it uses as a weapon to fire imploding vapor bubbles at opponents during fights. Larger snapping shrimp have bigger enlarged claws and tend to win more contests. Males also have larger weapons than females, and this sex difference is amplified during the breeding season. Dinh and Patek studied weapon size in several species of snapping shrimp. Measurements showed that after controlling for body size, individuals with larger weapons had smaller abdomens, suggesting there is a tradeoff between weapon size and abdomen size. Furthermore, small males exhibited the steepest tradeoff, in line with the handicap principle. Snapping shrimp also showed sex-specific costs and benefits. After controlling for body size, females with larger weapons produced fewer and smaller eggs, while males with larger weapons were more likely to be paired with females and generally paired with larger females. This suggests that weapons are particularly burdensome to female shrimp and particularly beneficial to males, especially during the breeding season. These findings provide elusive evidence for the handicap principle and extend the theory to explain sex and seasonal differences in the size of snapping shrimp weapons. More broadly, the findings highlight the value of studying both male and female animal weapons when, historically, the focus has been on male weaponry.
more »
« less
- Award ID(s):
- 2019323
- PAR ID:
- 10442673
- Date Published:
- Journal Name:
- eLife
- Volume:
- 12
- ISSN:
- 2050-084X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)To avoid predation, many animals mimic behaviours and/or coloration of dangerous prey. Here we examine potential sex-specific mimicry in the jumping spider Habronattus pyrrithrix . Previous work proposed that males' conspicuous dorsal coloration paired with characteristic leg-waving (i.e. false antennation) imperfectly mimics hymenopteran insects (e.g. wasps and bees), affording protection to males during mate-searching and courtship. By contrast, less active females are cryptic and display less leg-waving. Here we test the hypothesis that sexually dimorphic dorsal colour patterns in H. pyrrithrix are most effective when paired with sex-specific behaviours. We manipulated spider dorsal coloration with makeup to model the opposite sex and exposed them to a larger salticid predator ( Phidippus californicus ). We predicted that males painted like females should suffer higher predation rates than sham-control males. Likewise, females painted like males should suffer higher predation rates than sham-control females. Contrary to expectations, spiders with male-like coloration were attacked more than those with female-like coloration, regardless of their actual sex. Moreover, males were more likely to be captured, and were captured sooner, than females (regardless of colour pattern). With these unexpected negative results, we discuss alternative functional hypotheses for H. pyrrithrix colours, as well as the evolution of defensive coloration generally.more » « less
-
AbstractWhile there are many studies documenting female mating preferences across taxa, male mate choice remains relatively understudied. Male mate choice often develops when there is variation in female quality and thus the fitness benefits of mating with particular females. Specifically, males tend to prefer females with traits that confer direct fitness benefits such as large body size, which may be linked with high fecundity. Prior work has shown that females of the strawberry poison frog,Oophaga pumilio, prefer males bearing certain coloration (most often the female’s own color), and that this preference can be learned through maternal imprinting. Females have been shown to prefer larger males as well. Here we test whether similar mate preferences for color and size exist in males of this species using two-way choice tests on captive bred maleO. pumilio. In each test focal males were placed in an arena with two stimulus females: either both of the same size but differing in color, or both of the same color but differing in size. We found only weak evidence for behavioral biases toward particular colors and no evidence for biases toward larger females, suggesting that males ofO. pumiliodo not predictably choose mates based on these female traits. Despite several aspects of their natural history that suggest males have reasons to be choosy, our findings suggest that the cost of mate rejection may outweigh any fitness benefits derived from being selective of mates. Studies of additional populations, ideally conducted on wild individuals, are needed to better understand the range of conditions under which males may exhibit mate choice and the types of traits on which they base these choices. Significance statementTo fully understand the fitness landscapes and evolutionary trajectories that result from sexual selection, we need to understand when and how the mate preferences of the two sexes act and interact. While female mate choice has been widely studied, male mate choice remains poorly understood. To help bridge this gap, we studied male mate preferences in the strawberry poison frogOophaga pumilio, a small brightly colored frog for which female preferences for male color and size have been well-documented. We found no evidence that maleO. pumilioexhibit mate preferences based on female size and little evidence for male mate preferences based on female color. This is surprising given that larger females are often more fecund, maleO. pumilioare known to exhibit color-based behavioral biases in the context of male-male competition, and both sexes provide parental care.more » « less
-
null (Ed.)Abstract Background Patterns of gene expression can be dramatically different between males and females of the same species, in part due to genes on sex chromosomes. Here we test for sex differences in early transcriptomic response to oxidative stress in a species which lacks heteromorphic sex chromosomes, the copepod Tigriopus californicus . Results Male and female individuals were separately exposed to control conditions and pro-oxidant conditions (hydrogen peroxide and paraquat) for periods of 3 hours and 6 hours. Variance partitioning showed the greatest expression variance among individuals, highlighting the important information that can be obscured by the common practice of pooling individuals. Gene expression variance between sexes was greater than that among treatments, showing the profound effect of sex even when males and females share the same genome. Males exhibited a larger response to both pro-oxidants, differentially expressing more than four times as many genes, including up-regulation of more antioxidant genes, heat shock proteins and protease genes. While females differentially expressed fewer genes, the magnitudes of fold change were generally greater, indicating a more targeted response. Although females shared a smaller fraction of differentially expressed genes between stressors and time points, expression patterns of antioxidant and protease genes were more similar between stressors and more GO terms were shared between time points. Conclusions Early transcriptomic responses to the pro-oxidants H 2 O 2 and paraquat in copepods revealed substantial variation among individuals and between sexes. The finding of such profound sex differences in oxidative stress response, even in the absence of sex chromosomes, highlights the importance of studying both sexes and the potential for developing sex-specific strategies to promote optimal health and aging in humans.more » « less
-
Bird song has historically been characterized as a primarily male behavior that evolves through sexual selection pressures involved in mate attraction. More recently, researchers showed that female song is far more prevalent in songbirds than previously thought, raising new questions about how other social functions of birdsong and sexual selection pressures on females might affect song evolution. Certain breeding systems, particularly cooperative breeding, are hypothesized to change social dynamics and sexual selection pressures on males and females and may thus influence song evolution in both. Here, we construct a large-scale database synthesizing species-level information on the presence of female song, the characteristics of presumably male song, social variables, and breeding systems, and we perform comparative phylogenetic analyses. Our results suggest that cooperative breeding and female song co-occur significantly more than expected and exhibit co-evolutionary dynamics; in particular, cooperative breeding appears to decrease the likelihood that female song is lost. Notably, we find evidence that these trends might be linked to certain social features associated with cooperative breeding, including social bond stability, but not others, such as increased group size. In addition, we observe that song repertoire size appears to evolve more slowly in cooperative breeding lineages. Overall, our findings demonstrate that cooperative breeding may have complex and sex-specific effects on song evolution, maintaining female song while slowing the rate of male song elaboration, suggesting that song in cooperatively breeding species could function in ways that differ from the traditional mate-attraction paradigm and that lesser-studied functions of songs may be evolutionarily consequential.more » « less