Abstract Snow is the most reflective natural surface on Earth. Since fresh snow on bare sea ice increases the surface albedo, the impact of summer snow accumulation can have a negative radiative forcing effect, which would inhibit sea ice surface melt and potentially slow sea‐ice loss. However, it is not well known how often, where, and when summer snowfall events occur on Arctic sea ice. In this study, we used in situ and model snow depth data paired with surface albedo and atmospheric conditions from satellite retrievals to characterize summer snow accumulation on Arctic sea ice from 2003 to 2017. We found that, across the Arctic, ∼2 snow accumulation events occurred on initially snow‐free conditions each year. The average snow depth and albedo increases were ∼2 cm and 0.08, respectively. 16.5% of the snow accumulation events were optically thick (>3 cm deep) and lasted 2.9 days longer than the average snow accumulation event (3.4 days). Based on a simple, multiple scattering radiative transfer model, we estimated a −0.086 ± 0.020 W m−2change in the annual average top‐of‐the‐atmosphere radiative forcing for summer snowfall events in 2003–2017. The following work provides new information on the frequency, distribution, and duration of observed snow accumulation events over Arctic sea ice in summer. Such results may be particularly useful in understanding the impacts of ephemeral summer weather on surface albedo and their propagating effects on the radiative forcing over Arctic sea ice, as well as assessing climate model simulations of summer atmosphere‐ice processes. 
                        more » 
                        « less   
                    
                            
                            A tale of Two Events: Arctic Rain-on-Snow Meteorological Drivers
                        
                    
    
            Arctic warming may lead to altered occurrences and strengthening of extreme weather events. Arctic rain-on-snow (ROS) events are of a particular interest in this regard. ROS conditions generate hazards for the transportation sector, ranging from flooding and icing to airport closures, and can severely damage infrastructure through wet-snow avalanches. ROS events, and the resulting ice growth, interfere with foraging by reindeer, caribou, and musk oxen, heavily relied upon species among Indigenous peoples. There have been documented mass starvations of these animals due to ROS. This study addresses the meteorological setups of Arctic ROS events. We focus on cases for Iqaluit, Nunavut, in Canada and Nuuk, Greenland, using ERA5 atmospheric reanalysis, surface weather station data, and atmospheric soundings. At the synoptic scale, we find that blocking patterns play leading roles in ROS initiation, with atmospheric rivers contributing to both direct and indirect effects. Cyclone-induced low-level jets and resultant “warm noses” of higher air temperatures and elevated moisture transport are other key features in ROS generation. We conclude by postulating how climate change may alter the severity and frequency of Arctic ROS events, drawing on this improved knowledge of weather patterns leading to ROS conditions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1928230
- PAR ID:
- 10442789
- Date Published:
- Journal Name:
- Annals of glaciology
- ISSN:
- 0260-3055
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Rain-on-snow (ROS) events can have adverse impacts on high-latitude ungulate populations when rain freezes in the snowpack, forming ice layers that block access to winter forage. In extreme cases, ROS events have led to mass die-offs. ROS events are linked to advection of warm and moist air, associated with extratropical cyclones. However, these conditions are common to many winter precipitation events, challenging our understanding of the particular conditions under which ROS events occur. This study uses the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) to differentiate ROS events in Alaska from precipitation events in which only snow falls on a preexisting snowpack [snow-on-snow (SOS)]. Over the North Slope and Kotzebue Sound, no clear difference exists between the tracks of ROS-producing and SOS-producing storms. However, in the interior, southwest, and Anchorage, tracks of ROS-producing storms tend to be farther north and west than for SOS-producing storms. The northwest shift of ROS-producing storms is linked to the position of upper-tropospheric anticyclones in the eastern Gulf of Alaska during ROS events. ROS-producing storms are no more intense than SOS-producing storms, but their association with atmospheric blocking leads to stronger pressure gradients on the east side of storms and thereby stronger advection of positive anomalies in temperature and precipitable water. For several sites, sea level pressure in the eastern Gulf of Alaska is also significantly higher a few days prior to ROS events than prior to SOS events, further implicating atmospheric blocking as a facilitator and potential predictor of ROS events.more » « less
- 
            Abstract Warming temperatures and advancing spring are affecting annual snow and ice cycles, as well as plant phenology, across the Arctic and boreal regions. These changes may be linked to observed population declines in wildlife, including barren‐ground caribou (Rangifer tarandus), a key species of Arctic environments. We quantified how barren‐ground caribou, characteristically both gregarious and migratory, synchronize births in time and aggregate births in space and investigated how these tactics are influenced by variable weather conditions. We analyzed movement patterns to infer calving dates for 747 collared female caribou from seven herds across northern North America, totaling 1255 calving events over a 15‐year period. By relating these events to local weather conditions during the 1‐year period preceding calving, we examined how weather influenced calving timing and the ability of caribou to reach their central calving area. We documented continental‐scale synchrony in calving, but synchrony was greatest within an individual herd for a given year. Weather conditions before and during gestation had contrasting effects on the timing and location of calving. Notably, a combination of unfavorable weather conditions during winter and spring, including the pre‐calving migration, resulted in a late arrival on the calving area or a failure to reach the greater calving area in time for calving. Though local weather conditions influenced calving timing differently among herds, warm temperatures and low wind speed, which are associated with soft, deep snow, during the spring and pre‐calving migration, generally affected the ability of female caribou to reach central calving areas in time to give birth. Delayed calving may have potential indirect consequences, including reduced calf survival. Overall, we detected considerable variability across years and across herds, but no significant trend for earlier calving by caribou, even as broad indicators of spring and snow phenology trend earlier. Our results emphasize the importance of monitoring the timing and location of calving, and to examine how weather during summer and winter are affecting calving and subsequent reproductive success.more » « less
- 
            Abstract The Arctic’s rapid sea ice decline may influence global weather patterns, making the understanding of Arctic weather variability (WV) vital for accurate weather forecasting and analyzing extreme weather events. Quantifying this WV and its impacts under human-induced climate change remains a challenge. Here we develop a complexity-based approach and discover a strong statistical correlation between intraseasonal WV in the Arctic and the Arctic Oscillation. Our findings highlight an increased variability in daily Arctic sea ice, attributed to its decline accelerated by global warming. This weather instability can influence broader regional patterns via atmospheric teleconnections, elevating risks to human activities and weather forecast predictability. Our analyses reveal these teleconnections and a positive feedback loop between Arctic and global weather instabilities, offering insights into how Arctic changes affect global weather. This framework bridges complexity science, Arctic WV, and its widespread implications.more » « less
- 
            null (Ed.)Pronounced changes in the Arctic environment add a new potential driver of anomalous weather patterns in midlatitudes that affect billions of people. Recent studies of these Arctic/midlatitude weather linkages, however, state inconsistent conclusions. A source of uncertainty arises from the chaotic nature of the atmosphere. Thermodynamic forcing by a rapidly warming Arctic contributes to weather events through changing surface heat fluxes and large-scale temperature and pressure gradients. But internal shifts in atmospheric dynamics—the variability of the location, strength, and character of the jet stream, blocking, and stratospheric polar vortex (SPV)—obscure the direct causes and effects. It is important to understand these associated processes to differentiate Arctic-forced variability from natural variability. For example in early winter, reduced Barents/Kara Seas sea-ice coverage may reinforce existing atmospheric teleconnections between the North Atlantic/Arctic and central Asia, and affect downstream weather in East Asia. Reduced sea ice in the Chukchi Sea can amplify atmospheric ridging of high pressure near Alaska, influencing downstream weather across North America. In late winter southward displacement of the SPV, coupled to the troposphere, leads to weather extremes in Eurasia and North America. Combined tropical and sea ice conditions can modulate the variability of the SPV. Observational evidence for Arctic/midlatitude weather linkages continues to accumulate, along with understanding of connections with pre-existing climate states. Relative to natural atmospheric variability, sea-ice loss alone has played a secondary role in Arctic/midlatitude weather linkages; the full influence of Arctic amplification remains uncertain.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    