skip to main content


Title: Semiquantitative Estimates of Rainfall Variability During the 8.2 kyr Event in California Using Speleothem Calcium Isotope Ratios
Abstract

A multiproxy record from a fast‐growing stalagmite reveals variable hydroclimate on the California coast across the 8.2 kyr event and a precursor event likely caused by initial drainage of proglacial Lake Agassiz. Using speleothem δ44Ca, we develop the first semiquantitative estimates of paleorainfall variability for California through calibration with measurements of the modern climate and cave environment. We find that the magnitude of rainfall variability during the 8.2 kyr event approached the multiyear variability observable in the recent past (1950–2019) and the magnitude of variability during the precursor event likely exceeded this range. Additionally, we observe other instances of multidecadal variability comparable in magnitude to the precursor event during the record. Our work suggests that speleothem calcium isotope ratios are a powerful semiquantitative means to reconstruct paleorainfall, although numerous factors must be assessed in each cave system before applying this approach.

 
more » « less
Award ID(s):
1554998
NSF-PAR ID:
10442836
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
3
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change is expected to decrease mean precipitation in California, but changes in hydroclimate extremes are likely to have more immediate and significant impacts on California water resources, ecosystems, and economy. Paleoclimate records can provide valuable baseline data for constraining natural hydroclimate variability and improving climate projections, but quantitative precipitation records are limited. A new study by de Wet et al. (2021) provides the first semi‐quantitative record of early Holocene precipitation in central California, based on speleothem calcium isotope (δ44Ca) variations, that indicates that precipitation variability during and preceding the 8.2 kyr event approached or exceeded that of recent decades. This study outlines a new approach for developing more robust and quantitative hydroclimate records, and also highlights that precipitation “whiplash” is a ubiquitous feature of California's climate that we must prepare for, especially given the likelihood that human‐caused climate change is already increasing the frequency and severity of hydrologic extremes.

     
    more » « less
  2. Abstract

    The 8.2 ka event is the most significant global climate anomaly of the Holocene epoch, but a lack of records from Mainland Southeast Asia (MSEA) currently limits our understanding of the spatial and temporal extent of the climate response. A newly developed speleothem record from Tham Doun Mai Cave, Northern Laos provides the first high‐resolution record of this event in MSEA. Our multiproxy record (δ18O, δ13C, Mg/Ca, Sr/Ca, and petrographic data), anchored in time by 9 U‐Th ages, reveals a significant reduction in local rainfall amount and weakening of the monsoon at the event onset at ∼8.29 ± 0.03 ka BP. This response lasts for a minimum of ∼170 years, similar to event length estimates from other speleothem δ18O monsoon records. Interestingly, however, our δ13C and Mg/Ca data, proxies for local hydrology, show that abrupt changes to local rainfall amounts began decades earlier (∼70 years) than registered in the δ18O. Moreover, the δ13C and Mg/Ca also show that reductions in rainfall continued for at least ∼200 years longer than the weakening of the monsoon inferred from the δ18O. Our interpretations suggest that drier conditions brought on by the 8.2 ka event in MSEA were felt beyond the temporal boundaries defined by δ18O‐inferred monsoon intensity, and an initial wet period (or precursor event) may have preceded the local drying. Most existing Asian Monsoon proxy records of the 8.2 ka event may lack the resolution and/or multiproxy information necessary to establish local and regional hydrological sensitivity to abrupt climate change.

     
    more » « less
  3. Abstract

    The Yucatán Peninsula (YP) has a complex hydroclimate with many proposed drivers of interannual and longer‐term variability, ranging from coupled ocean–atmosphere processes to frequency of tropical cyclones. The mid‐Holocene, a time of higher Northern Hemisphere summer insolation, provides an opportunity to test the relationship between YP precipitation and ocean temperature. Here, we present a new, ∼annually resolved speleothem record of stable isotope (δ18O and δ13C) and trace element (Mg/Ca and Sr/Ca) ratios for a section of the mid‐Holocene (5.2–5.7 kyr BP), before extensive agriculture began in the region. A meter‐long stalagmite from Río Secreto, a cave system in Playa del Carmen, Mexico, was dated using U–Th geochronology and layer counting, yielding multidecadal age uncertainty (median 2SD of ±70 years). New proxy data were compared to an existing late Holocene stalagmite record from the same cave system, allowing us to examine changes in hydrology over time and to paleoclimate records from the southern YP. The δ18O, δ13C, and Mg/Ca data consistently indicate higher mean precipitation and lower precipitation variability during the mid‐Holocene compared to the late Holocene. Despite this reduced variability, multidecadal precipitation variations were persistent in regional hydroclimate during the mid‐Holocene. We therefore conclude that higher summer insolation led to increased mean precipitation and decreased precipitation variability in the northern YP but that the region is susceptible to dry periods across climate mean states. Given projected decreases in wet season precipitation in the YP’s near future, we suggest that climate mitigation strategies emphasize drought preparation.

     
    more » « less
  4. Abstract

    We present a 500‐year precipitation‐sensitive record based on co‐varying speleothem δ18O values and Mg/Ca ratios from Larga cave in Puerto Rico. This multi‐proxy record shows that the evolution of rainfall in the northeastern Caribbean was characterized by alternating centennial dry and wet phases corresponding to reduced versus enhanced convective activity. These phases occurred synchronous with relatively cool and warm tropical Atlantic sea‐surface temperatures (SSTs), respectively. While the observed pattern suggests a close link of northeastern Caribbean rainfall to the Atlantic Multidecadal Variability, a regional comparison reveals intermittent regional heterogeneity especially on decadal timescales, which may be related to a superimposing influence of the Pacific and Atlantic basins. Furthermore, the speleothem‐based hydroclimate reconstruction indicates a significant volcanic impact during the past two centuries, and further reveals a potential solar signal in the preceding three centuries. We posit that the forcing likely shifted from solar to volcanic during the eighteenth century in being an important source of multidecadal to centennial Caribbean rainfall variability. The link between convective rainfall and natural forcing may be explained through a modulation of SST variations in the tropical Atlantic and Pacific oceans.

     
    more » « less
  5. Abstract

    Here we present, to date, the highest‐resolved (~5 years) and most precisely dated Holocene monsoon climate reconstruction for the western Chinese Loess Plateau based on five replicated stalagmite δ18O records from Wuya Cave, eastern Gansu, China. Our record suggests the wettest period occurred between 10,500 and 6,600 a BP in this region. After this period, the amplitude of Asian summer monsoon decadal‐scale variability progressively increased likely in response to increasing ENSO frequency since the middle Holocene. Our study reveals similar asymmetric centennial‐scale double‐plunging structures of the 8.2, 5.5, and 2.8 ka events in the western Chinese Loess Plateau, suggesting a possible role of solar activity whose impact was amplified around 8.2 ka BP by the meltwater flood. In contrast, the 4.2 ka event exhibit gradually declining monsoon rainfall with centennial‐ to decadal‐scale fluctuations.

     
    more » « less