skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semiquantitative Estimates of Rainfall Variability During the 8.2 kyr Event in California Using Speleothem Calcium Isotope Ratios
Abstract A multiproxy record from a fast‐growing stalagmite reveals variable hydroclimate on the California coast across the 8.2 kyr event and a precursor event likely caused by initial drainage of proglacial Lake Agassiz. Using speleothem δ44Ca, we develop the first semiquantitative estimates of paleorainfall variability for California through calibration with measurements of the modern climate and cave environment. We find that the magnitude of rainfall variability during the 8.2 kyr event approached the multiyear variability observable in the recent past (1950–2019) and the magnitude of variability during the precursor event likely exceeded this range. Additionally, we observe other instances of multidecadal variability comparable in magnitude to the precursor event during the record. Our work suggests that speleothem calcium isotope ratios are a powerful semiquantitative means to reconstruct paleorainfall, although numerous factors must be assessed in each cave system before applying this approach.  more » « less
Award ID(s):
1554998
PAR ID:
10442836
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
3
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The 8.2 ka event is the most significant global climate anomaly of the Holocene epoch, but a lack of records from Mainland Southeast Asia (MSEA) currently limits our understanding of the spatial and temporal extent of the climate response. A newly developed speleothem record from Tham Doun Mai Cave, Northern Laos provides the first high‐resolution record of this event in MSEA. Our multiproxy record (δ18O, δ13C, Mg/Ca, Sr/Ca, and petrographic data), anchored in time by 9 U‐Th ages, reveals a significant reduction in local rainfall amount and weakening of the monsoon at the event onset at ∼8.29 ± 0.03 ka BP. This response lasts for a minimum of ∼170 years, similar to event length estimates from other speleothem δ18O monsoon records. Interestingly, however, our δ13C and Mg/Ca data, proxies for local hydrology, show that abrupt changes to local rainfall amounts began decades earlier (∼70 years) than registered in the δ18O. Moreover, the δ13C and Mg/Ca also show that reductions in rainfall continued for at least ∼200 years longer than the weakening of the monsoon inferred from the δ18O. Our interpretations suggest that drier conditions brought on by the 8.2 ka event in MSEA were felt beyond the temporal boundaries defined by δ18O‐inferred monsoon intensity, and an initial wet period (or precursor event) may have preceded the local drying. Most existing Asian Monsoon proxy records of the 8.2 ka event may lack the resolution and/or multiproxy information necessary to establish local and regional hydrological sensitivity to abrupt climate change. 
    more » « less
  2. Abstract Variations in speleothem calcium isotope ratios (δ44Ca) are thought to be uniquely controlled by prior carbonate precipitation (PCP) above a drip site and, when calibrated with modern data, show promise as a semi‐quantitative proxy for paleorainfall. However, few monitoring studies have focused on δ44Ca in modern cave systems. We present a multi‐year comparative study of δ44Ca, carbon isotopes (δ13C), and trace elemental ratios from cave drip waters, modern calcite, and host rocks from two cave systems in California—White Moon Cave (WMC) and Lake Shasta Caverns (LSC). Drip water and calcite δ44Ca from both caves indicate PCP‐driven enrichment, and we used a simple Rayleigh fractionation model to quantify PCP variability over the monitoring period. Modern calcite trace element and δ44Ca data positively correlate at WMC, but not at LSC, indicating a shared PCP control on these proxies at WMC but not at LSC. At both WMC and LSC, we observe an inverse relationship between PCP and rainfall amounts, though this relationship is variable across individual drip sites. Our modeled data suggest that WMC experiences ∼20% more PCP than LSC, consistent with the fact that WMC receives less annual rainfall. This work supports speleothem δ44Ca as an independent constraint on PCP that can aid in the interpretation of other hydrologically sensitive proxies and provide quantitative estimates of paleorainfall. Additional, long‐term monitoring studies from a variety of climate settings will be key for understanding δ44Ca variability in cave systems more fully and better constraining the relationship between PCP and rainfall. 
    more » « less
  3. The 8.2 ka event is the most significant global climate anomaly of the Holocene epoch, but a lack of records from Mainland Southeast Asia (MSEA) currently limits our understanding of the spatial and temporal extent of the climate response. A newly developed speleothem record from Tham Doun Mai Cave, Northern Laos provides the first high resolution record of this event in MSEA. Our multiproxy record (d18O, d13C, Mg/Ca, Sr/Ca, and petrographic data), anchored in time by 9 U-Th ages, reveals a significant reduction in local rainfall amount and weakening of the monsoon at the event onset at ~8.29 +/- 0.03 ka BP. This response lasts for a minimum of ~170 years, similar to event length estimates from other speleothem d18O monsoon records. Interestingly, however, our d13C and Mg/Ca data, proxies for local hydrology, show that abrupt changes to local rainfall amounts began decades earlier (~70 years) than registered in the d18O. Moreover, the d13C and Mg/Ca also show that reductions in rainfall continued for at least ~200 years longer than the weakening of the monsoon inferred from the d18O. Our interpretations suggest that drier conditions brought on by the 8.2 ka event in MSEA were felt beyond the temporal boundaries defined by d18O-inferred monsoon intensity, and an initial wet period (or precursor event) may have preceded the local drying. Most existing Asian Monsoon proxy records of the 8.2 ka event may lack the resolution and/or multiproxy information necessary to establish local and regional hydrological sensitivity to abrupt climate change. 
    more » « less
  4. We present a continuous high-resolution precisely dated multiproxy record of hydroclimate variability at Anjohibe cave in northwestern Madagascar using speleothem AB13. The record spans from ~4484 y BP to ~2863 y BP. Stalagmite δ18O, δ13C and Sr/Ca ratios show very similar changes in hydroclimate. The mechanism controlling Sr/Ca changes, however, from prior calcite precipitation to degree of dolomite dissolution at about 4 ky BP. Our record is also in good agreement with previously published speleothem records from the same area. This agreement and multiproxy consensus indicate that AB13 provides a robust record of hydroclimate variability, including a continuous record of hydroclimate variability across the 4.2 ka event. This 4.2 ka event in Madagascar is marked by two distinct periods of drying between ~3900 y BP to 4300 y BP. A dry 4.2 ka event at this Southern Hemisphere site helps limit possible mechanisms for the event, indicating that a meridional shift to the south in the ITCZ is not responsible for the 4.2 ka event. In addition, the 4.2 ka event does not stand out as a unique dry period in our record. The longest and driest period of the record lasted ~300 years with peak dryness at ~3000 y BP. Our record differs significantly from a speleothem record from Rodrigues Island, located ~1800 km to the east of our study area in Madagascar suggesting different climatological controls on northwest Madagascar and more oceanic sites to the east. 
    more » « less
  5. Abstract Here we present, to date, the highest‐resolved (~5 years) and most precisely dated Holocene monsoon climate reconstruction for the western Chinese Loess Plateau based on five replicated stalagmite δ18O records from Wuya Cave, eastern Gansu, China. Our record suggests the wettest period occurred between 10,500 and 6,600 a BP in this region. After this period, the amplitude of Asian summer monsoon decadal‐scale variability progressively increased likely in response to increasing ENSO frequency since the middle Holocene. Our study reveals similar asymmetric centennial‐scale double‐plunging structures of the 8.2, 5.5, and 2.8 ka events in the western Chinese Loess Plateau, suggesting a possible role of solar activity whose impact was amplified around 8.2 ka BP by the meltwater flood. In contrast, the 4.2 ka event exhibit gradually declining monsoon rainfall with centennial‐ to decadal‐scale fluctuations. 
    more » « less