skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The role of native and introduced birds in transmission of avian malaria in Hawaii
Abstract The introduction of nonnative species and reductions in native biodiversity have resulted in substantial changes in vector and host communities globally, but the consequences for pathogen transmission are poorly understood. In lowland Hawaii, bird communities are composed of primarily introduced species, with scattered populations of abundant native species. We examined the influence of avian host community composition, specifically the role of native and introduced species, as well as host diversity, on the prevalence of avian malaria (Plasmodium relictum) in the southern house mosquito (Culex quinquefasciatus). We also explored the reciprocal effect of malaria transmission on native host populations and demography. Avian malaria infection prevalence in mosquitoes increased with the density and relative abundance of native birds, as well as host community competence, but was uncorrelated with host diversity. Avian malaria transmission was estimated to reduce population growth rates of Hawai‘i ʻamakihi (Chlorodrepanis virens) by 7–14%, but mortality from malaria could not explain gaps in this species’ distribution at our sites. Our results suggest that, in Hawaii, native host species increase pathogen transmission to mosquitoes, but introduced species can also support malaria transmission alone. The increase in pathogen transmission with native bird abundance leads to additional disease mortality in native birds, further increasing disease impacts in an ecological feedback cycle. In addition, vector abundance was higher at sites without native birds and this overwhelmed the effects of host community composition on transmission such that infected mosquito abundance was highest at sites without native birds. Higher disease risk at these sites due to higher vector abundance could inhibit recolonization and recovery of native species to these areas. More broadly, this work shows how differences in host competence for a pathogen among native and introduced taxa can influence transmission and highlights the need to examine this question in other systems to determine the generality of this result.  more » « less
Award ID(s):
2001213
PAR ID:
10442950
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
7
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Globally, zoonotic vector-borne diseases are on the rise and understanding their complex transmission cycles is pertinent to mitigating disease risk. In North America, Lyme disease is the most commonly reported vector-borne disease and is caused by transmission of Borrelia burgdorferi sensu lato (s.l.) from Ixodes spp. ticks to a diverse group of vertebrate hosts. Small mammal reservoir hosts are primarily responsible for maintenance of B. burgdorferi s.l. across the United States. Never- theless, birds can also be parasitized by ticks and are capable of infection with B. burgdorferi s.l. but their role in B. burgdorferi s.l. transmission dynamics is understudied. Birds could be important in both the maintenance and spread of B. burgdorferi s.l. and ticks because of their high mobility and shared habitat with important mammalian reservoir hosts. This study aims to better understand the role of avian hosts in tick-borne zoonotic disease transmission cycles in the western United States. We surveyed birds, mammals, and ticks at nine sites in northern California for B. burgdorferi s.l. infection and collected data on other metrics of host community composition such as abundance and diversity of birds, small mammals, lizards, predators, and ticks. We found 22.8% of birds infected with B. burgdorferi s.l. and that the likelihood of avian B. burgdorferi s.l. infection was significantly associated with local host community composition and pathogen prevalence in California. Addition- ally, we found an average tick burden of 0.22 ticks per bird across all species. Predator and lizard abundances were significant predictors of avian tick infestation. These results indicate that birds are relevant hosts in the local B. burgdorferi s.l. transmission cycle in the western United States and quantifying their role in the spread and maintenance of Lyme disease requires further research. 
    more » « less
  2. Abstract Extrinsic environmental factors influence the spatiotemporal dynamics of many organisms, including insects that transmit the pathogens responsible for vector‐borne diseases (VBDs). Temperature is an especially important constraint on the fitness of a wide variety of ectothermic insects. A mechanistic understanding of how temperature impacts traits of ectotherms, and thus the distribution of ectotherms and vector‐borne infections, is key to predicting the consequences of climate change on transmission of VBDs like malaria. However, the response of transmission to temperature and other drivers is complex, as thermal traits of ectotherms are typically nonlinear, and they interact to determine transmission constraints. In this study, we assess and compare the effect of temperature on the transmission of two malaria parasites,Plasmodium falciparumandPlasmodium vivax, by two malaria vector species,Anopheles gambiaeandAnopheles stephensi. We model the nonlinear responses of temperature dependent mosquito and parasite traits (mosquito development rate, bite rate, fecundity, proportion of eggs surviving to adulthood, vector competence, mortality rate, and parasite development rate) and incorporate these traits into a suitability metric based on a model for the basic reproductive number across temperatures. Our model predicts that the optimum temperature for transmission suitability is similar for the four mosquito–parasite combinations assessed in this study, but may differ at the thermal limits. More specifically, we found significant differences in the upper thermal limit between parasites spread by the same mosquito (A. stephensi) and between mosquitoes carryingP. falciparum. In contrast, at the lower thermal limit the significant differences were primarily between the mosquito species that both carried the same pathogen (e.g.,A. stephensiandA. gambiaeboth withP. falciparum). Using prevalence data, we show that the transmission suitability metric calculated from our mechanistic model is consistent with observedP. falciparumprevalence in Africa and Asia but is equivocal forP. vivaxprevalence in Asia, and inconsistent withP. vivaxprevalence in Africa. We mapped risk to illustrate the number of months various areas in Africa and Asia predicted to be suitable for malaria transmission based on this suitability metric. This mapping provides spatially explicit predictions for suitability and transmission risk. 
    more » « less
  3. Since its introduction to North America in 1999, the West Nile virus (WNV) has resulted in over 50,000 human cases and 2400 deaths. WNV transmission is maintained via mosquito vectors and avian reservoir hosts, yet mosquito and avian infections are not uniform across ecological landscapes. As a result, it remains unclear whether the ecological communities of the vectors or reservoir hosts are more predictive of zoonotic risk at the microhabitat level. We examined this question in central Iowa, representative of the midwestern United States, across a land use gradient consisting of suburban interfaces with natural and agricultural habitats. At eight sites, we captured mosquito abundance data using New Jersey light traps and monitored bird communities using visual and auditory point count surveys. We found that the mosquito minimum infection rate (MIR) was better predicted by metrics of the mosquito community than metrics of the bird community, where sites with higher proportions of Culex pipiens group mosquitoes during late summer (after late July) showed higher MIRs. Bird community metrics did not significantly influence mosquito MIRs across sites. Together, these data suggest that the microhabitat suitability of Culex vector species is of greater importance than avian community composition in driving WNV infection dynamics at the urban and agricultural interface. 
    more » « less
  4. Abstract The malaria parasitePlasmodium relictum(lineage GRW4) was introduced less than a century ago to the native avifauna of Hawaiʻi, where it has since caused major declines of endemic bird populations. One of the native bird species that is frequently infected with GRW4 is the Hawaiʻi ʻamakihi (Chlorodrepanis virens). To achieve a better understanding of the transcriptional activities of this virulent parasite, we performed a controlled challenge experiment of 15 ʻamakihi that were infected with GRW4. Blood samples containing malaria parasites were collected at two time points (intermediate and peak infection stages) from host individuals that were either experimentally infected by mosquitoes or inoculated with infected blood. We then used RNA sequencing to assemble a high‐quality blood transcriptome ofP. relictumGRW4, allowing us to quantify parasite expression levels inside individual birds. We found few significant differences (one to two transcripts) in GRW4 expression levels between host infection stages and between inoculation methods. However, 36 transcripts showed differential expression levels among all host individuals, indicating a potential presence of host‐specific gene regulation across hosts. To reduce the extinction risk of the remaining native bird species in Hawaiʻi, genetic resources of the localPlasmodiumlineage are needed to enable further molecular characterization of this parasite. Our newly built Hawaiian GRW4 transcriptome assembly, together with analyses of the parasite's transcriptional activities inside the blood of Hawaiʻi ʻamakihi, can provide us with important knowledge on how to combat this deadly avian disease in the future. 
    more » « less
  5. Abstract BackgroundAs habitat fragmentation increases, ecological processes, including patterns of vector-borne pathogen prevalence, will likely be disrupted, but ongoing investigations are necessary to examine this relationship. Here, we report the differences in the prevalence of Lyme disease (Borrelia burgdorferisensu lato, s.l.) and haemoproteosis (Haemoproteusspp.) pathogens in avian populations of a fragmented habitat.B. burgdorferis.l. is a generalist pathogen that is transmitted byIxodes pacificusvectors in California, andHaemoproteusis an avian parasite transmitted byCulicoidesvectors. MethodsTo determine whether biotic (avian and mammalian abundance) or abiotic characteristics (patch size and water availability) correlated with infection prevalence change, we screened 176 birds sampled across seven sites in oak woodland habitat in northern California. ResultsWhile biotic factors correlated with an increase in both pathogens, infection prevalence ofHaemoproteusspp. was only associated with individual-level traits, specifically foraging substrate and diet, andB. burgdorferis.l. was associated with community-level characteristics, both total mammal and, specifically, rodent abundance. Proximity to water was the only abiotic factor found to be significant for both pathogens and reinforces the importance of water availability for transmission cycles. Larger patch sizes did not significantly affect infection prevalence ofHaemoproteus,but did increase the prevalence ofB. burgdorferi. ConclusionsThese results highlight that while environmental factors (specifically habitat fragmentation) have a limited role in vector-borne pathogen prevalence, the indirect impact to biotic factors (community composition) can have consequences for bothHaemoproteusandB. burgdorferiprevalence in birds. Given the pervasiveness of habitat fragmentation, our results are of broad significance. Graphical abstract 
    more » « less