skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Catalytic Ammonia Oxidation to Dinitrogen by a Nickel Complex
Abstract We report a nickel complex for catalytic oxidation of ammonia to dinitrogen under ambient conditions. Using the aryloxyl radical 2,4,6‐tri‐tert‐butylphenoxyl (tBu3ArO⋅) as a H atom acceptor to cleave the N−H bond of a coordinated NH3ligand up to 56 equiv of N2per Ni center can be generated. Employing theN‐oxyl radical 2,2,6,6‐(tetramethylpiperidin‐1‐yl)oxyl (TEMPO⋅) as the H‐atom acceptor, up to 15 equiv of N2per Ni center are formed. A bridging Ni‐hydrazine product identified by isotopic nitrogen (15N) studies and supported by computational models indicates the N−N bond forming step occurs by bimetallic homocoupling of two paramagnetic [Ni]−NH2fragments. Ni‐mediated hydrazine disproportionation to N2and NH3completes the catalytic cycle.  more » « less
Award ID(s):
1956161 2018388
PAR ID:
10388259
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
1
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fac-[(CO)3Mo(PtBu2NPh2)(NH3)] catalyzed NH3oxidation to N2using phenoxyl radicals as H atom acceptors generating up to 88 equiv. N2per Mo centre. 
    more » « less
  2. Abstract Carbosulfenylation of olefins represents an important class of reactions for the synthesis of structurally diverse organosulfur compounds. Previous studies typically yield 1,2‐regioselectivity. In the context of diversity‐oriented synthesis, accessing the regioreversed products is desirable, significantly broadening the scope of these reactions. In this study, we report a nickel‐catalyzed 2,1‐carbosulfenylation of trifluoromethyl‐ andgem‐difluoroalkenes, using free thiols and benzyl bromides as sulfur and carbon sources, respectively. The unusual regioselectivity observed is enabled by a “radical sorting” mechanism. The Ni catalyst activates benzyl bromide to generate a benzylic radical that undergoes hydrogen atom transfer (HAT) with the thiol to form a sulfur‐centered radical. The sulfur radical subsequently adds to the fluoroalkenes, resulting in an α‐fluoroalkyl C‐radical. This radical undergoes SH2 with a Ni–CH2Ar to form a C(sp3)─C(sp3) bond and quaternary center, ultimately producing valuable fluoroalkyl thioethers. Isotopic labeling experiments corroborate a hydrogen atom transfer (HAT) event within the working mechanism. 
    more » « less
  3. Abstract The synthesis and characterization of (tBuPBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni−C bond of (tBuPBP)NiMe (1) is presented. An unexpected CO2cleavage process involving the formation of new B−O and Ni−CO bonds leads to the generation of a butterfly‐structured tetra‐nickel cluster (tBuPBOP)2Ni4(μ‐CO)2(6). Mechanistic investigation of this reaction indicates a reductive scission of CO2by O‐atom transfer to the boron atom via a cooperative nickel‐boron mechanism. The CO2activation reaction produces a three‐coordinate (tBuP2BO)Ni‐acyl intermediate (A) that leads to a (tBuP2BO)−NiIcomplex (B) via a likely radical pathway. The NiIspecies is trapped by treatment with the radical trap (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) to give (tBuP2BO)NiII2‐TEMPO) (7). Additionally,13C and1H NMR spectroscopy analysis using13C‐enriched CO2provides information about the species involved in the CO2activation process. 
    more » « less
  4. Abstract The molecular complexes described herein use main‐group elements or transition metals to control the stoichiometric cleavage of N−H bonds of ammonia (NH3) and/or catalyze chemical and electrochemical NH3oxidation to dinitrogen (N2). We highlight the phenomenon of coordination‐induced bond weakening and a variety of N−H bond cleavage mechanisms of NH3including H atom abstraction, inter‐ and intra‐molecular deprotonation reactions, oxidative addition, andσ‐bond metathesis that have been demonstrated with molecular systems. We provide an overview of the molecular complexes reported for the rapidly developing field of NH3oxidation catalysis to form N2. These systems exhibit several diverse structure types and innovative ligands to support transition metals capable of activating NH3and mediating a challenging chemical transformation that requires breaking strong N−H bonds and forming an N−N bond en route to N2formation. 
    more » « less
  5. Abstract The design ofN‐oxyl hydrogen atom transfer catalysts has proven challenging to date. Previous efforts have focused on the functionalization of the archetype, phthalimide‐N‐oxyl. Driven in part by the limited options for modification of this structure, this strategy has provided only modest improvements in reactivity and/or solubility. Our previous mechanistic efforts suggested that while the electron‐withdrawing carbonyls of the phthalimide are necessary to maximize the O−H bond dissociation enthalpy of the HAT product hydroxylamine and overall reaction thermodynamics, they undergo nucleophilic substitution leading to catalyst decomposition. In an attempt to minimize this vulnerability, we report the characterization ofN‐oxyl catalysts wherein the aryl ring in PINO is replaced with the combination of a substituted heteroatom and quaternary carbon. By rendering one carbonyl carbon less electrophilic and the other less sterically accessible, the correspondingN1‐aryl‐hydantoin‐N3‐oxyl radical showed significantly higher stability than PINO as well as a modest improvement in reactivity. This proof‐of‐principle in new scaffold design may accelerate future HAT catalyst discovery and development. 
    more » « less