skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fine‐scale variation in soil and topography influences herbaceous vegetation and the distribution of large mammalian herbivores
Abstract Current understanding of the distribution of vegetation and large mammalian herbivores (LMH) is based on a combination of biogeographic studies and highly controlled field experiments, but a more complete understanding of these patterns requires study of their natural co‐occurrence patterns at intermediate spatial scales. The study was conducted in the 120‐ha Mpala Forest Global Earth Observatory (ForestGEO) plot, Kenya. We examined differences in herbaceous plant communities and habitat use by LMH among three topographic habitats with distinct soil types, namely steep slopes, valley and plateau. Each pair of habitats differed in plant and animal composition. The steep slopes and plateau respectively had ≥1‐fold higher percentage herbaceous cover than the valley, whereas the steep slopes and valley had >1.5‐fold greater grass species richness and diversity than the plateau. The activity of LMH was ≥1.7‐fold higher in the valley than the steep slopes and plateau, reflecting a positive relationship between LMH activity index and richness and diversity of grass species. Results indicate that fine‐scale variation in topography and soil are associated with both the distribution of herbaceous vegetation and LMH, suggesting a need to account for local habitat characteristics when examining the distributions of plants, animals, and plant‐herbivore interactions in natural systems.  more » « less
Award ID(s):
1930820
PAR ID:
10443028
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
African Journal of Ecology
Volume:
61
Issue:
3
ISSN:
0141-6707
Page Range / eLocation ID:
p. 706-716
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Restoration techniques using passive management rely on natural plant community succession after reclamation to return disturbed areas to native ecosystems. This approach is often used in areas affected by mining activity, but effectiveness is variable and depends on the ability of native plants to establish in highly degraded soil and outcompete invasive species. We evaluated the restoration progress of three former surface mines where activity had exposed alkaline glacial till parent material. The mines underwent reclamation (grading, soil compaction, and planting fast‐growing herbaceous species) followed by passive management for 7, 28, and 35 years. At the time of initial restoration planning in the 1980s, native woody species were expected to recolonize the site within 10–20 years. Treating the sites as a chronosequence, we observed that woody vegetation increased inconsistently over this 35‐year timespan. Most of the woody plants present today are invasive species (Elaeagnus umbellataandRhamnus frangula) that are counterproductive to reestablishment of native forest. However, results were not entirely negative, with increased overall native species and decreased exotic species in the older sites, and plant community composition changing somewhat consistently over time. This suggests that succession has been slowed rather than completely arrested, and native herbaceous plants are establishing. The progression of restoration appears to be far slower than expectations during initial planning. Furthermore, native woody plants struggle to establish, whereas invasive woody plants are thriving, raising doubts that passively managed succession can lead to the desired outcome of a native species forest in this significantly degraded habitat. 
    more » « less
  2. null (Ed.)
    Termites are important ecosystem engineers in tropical habitats, with different feeding groups able to decompose wood, grass, litter, and soil organic matter. In most tropical regions, termite abundance and species diversity are assumed to increase with rainfall, with highest levels found in rainforests. However, in the Australian tropics, this pattern is thought to be reversed, with lower species richness and termite abundance found in rainforest than drier habitats. The potential mechanisms underlying this pattern remain unclear. We compared termite assemblages (abundance, activity, diversity, and feeding group composition) across five sites along a precipitation gradient (ranging from ∼800 to 4,000 mm annual rainfall), spanning dry and wet savanna habitats, wet sclerophyll, and lowland and upland rainforests in tropical North Queensland. Moving from dry to wet habitats, we observed dramatic decreases in termite abundance in both mounds and dead wood occupancy, with greater abundance and activity at savanna sites (low precipitation) compared with rainforest or sclerophyll sites (high precipitation). We also observed a turnover in termite species and feeding group diversity across sites that were close together, but in different habitats. Termite species and feeding group richness were highest in savanna sites, with 13 termite species from wood-, litter-, grass-, dung-, and soil-feeding groups, while only five termite species were encountered in rainforest and wet sclerophyll sites—all wood feeders. These results suggest that the Australian termite diversity anomaly may be partly driven by how specific feeding groups colonized habitats across Australia. Consequently, termites in Australian rainforests may be less important in ecosystem processes, such as carbon and nutrient cycling during decomposition, compared with termites in other tropical rainforests. 
    more » « less
  3. Abstract Global climate and land use change are causing woody plant encroachment in arctic, alpine, and arid/semi‐arid ecosystems around the world, yet our understanding of the belowground impacts of this phenomenon is limited. We conducted a globally distributed field study of 13 alpine sites across four continents undergoing woody plant encroachment and sampled soils from both woody encroached and nearby herbaceous plant community types. We found that woody plant encroachment influenced soil microbial richness and community composition across sites based on multiple factors including woody plant traits, site level climate, and abiotic soil conditions. In particular, root symbiont type was a key determinant of belowground effects, as Nitrogen‐fixing woody plants had higher soil fungal richness, while Ecto/Ericoid mycorrhizal species had higher soil bacterial richness and symbiont types had distinct soil microbial community composition. Woody plant leaf traits indirectly influenced soil microbes through their impact on soil abiotic conditions, primarily soil pH and C:N ratios. Finally, site‐level climate affected the overall magnitude and direction of woody plant influence, as soil fungal and bacterial richness were either higher or lower in woody encroached versus herbaceous soils depending on mean annual temperature and precipitation. All together, these results document global impacts of woody plant encroachment on soil microbial communities, but highlight that multiple biotic and abiotic pathways must be considered to scale up globally from site‐ and species‐level patterns. Considering both the aboveground and belowground effects of woody encroachment will be critical to predict future changes in alpine ecosystem structure and function and subsequent feedbacks to the global climate system. 
    more » « less
  4. Given widespread concerns over human-mediated bee declines in abundance and species richness, conservation efforts are increasingly focused on maintaining natural habitats to support bee diversity in otherwise resource-poor environments. However, natural habitat patches can vary in composition, impacting landscape-level heterogeneity and affecting plant-pollinator interactions. Plant-pollinator networks, especially those based on pollen loads, can provide valuable insight into mutualistic relationships, such as revealing the degree of pollination specialization in a community; yet, local and landscape drivers of these network indices remain understudied within urbanizing landscapes. Beyond networks, analyzing pollen collection can reveal key information about species-level pollen preferences, providing plant restoration information for urban ecosystems. Through bee collection, vegetation surveys, and pollen load identification across ~350 km of urban habitat, we studied the impact of local and landscape-level management on plant-pollinator networks. We also quantified pollinator preferences for plants within urban grasslands. Bees exhibited higher foraging specialization with increasing habitat heterogeneity and visited fewer flowering species (decreased generality) with increasing semi-natural habitat cover. We also found strong pollinator species-specific flower foraging preferences, particularly for Asteraceae plants. We posit that maintaining native forbs and supporting landscape-level natural habitat cover and heterogeneity can provide pollinators with critical food resources across urbanizing ecosystems. 
    more » « less
  5. Within a forest, differences in landform spatial variation (i.e., geomorphic settings: valley, slope, and ridge) could affect the species richness and distribution present at a particular site. Previous studies have confirmed that plant species richness and biomass changes after a hurricane and such values can vary among geomorphic settings. Understory vegetation, including ferns, herbs, climbers, graminoids, and shrubs, accounts for more than two thirds of flora in tropical ecosystems, but there is limited information of the effect of hurricanes on these communities. We evaluated the structure and composition of understory vegetation in a post-hurricane forest in relation to geomorphic settings. This study was conducted in El Verde Research Area in the Luquillo Experimental Forest, Puerto Rico. We established 1-m2 plots within three geomorphic settings: riparian valley, slope, and ridge. Within each plot we identified species, estimated percent of cover, and collected biomass samples. Additionally, we estimated species accumulation curves and analyzed species composition among geomorphic settings using multivariate ordination. The relative species abundance of vegetation life-forms was similar among geomorphic settings, but graminoids and climbers exhibited differences in species composition. Higher forest understory biomass and percent vegetation cover was observed at this immediate post-hurricane period than what was reported pre-hurricane. The understory of valley areas had a more distinct species composition than what was observed among ridge and slope areas. The understory vegetation patterns observed would need to be followed through time and among the landforms to confirm the hurricane disturbances effects at these understory scale. 
    more » « less