skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecular Turnstiles Featuring Bicyclic Rotators: Solution and Solid‐State Investigation of Steric and Electronic Concerns
Abstract A molecular rotor is created when a 2,1,3‐benzothiadiazole rotator is incorporated into a rigid arylene ethynylene framework supported by pyridine coordination to a metal (Ag+or PdCl2) guest. Comparisons to a similarly sized naphthyl rotator via1H NMR spectroscopy provide insights into the movement of these bicyclic rotators relative to the rigid stator framework. Chemical shift increases of 0.3 ppm, or more, upon metal complexation are consistent with through‐space interaction of the central arene with a bound PdCl2guest. Further study via X‐ray crystallography illustrates that rotation of the 2,1,3‐benzothiadiazole unit in the solid state is likely hampered by relatively strong chalcogen bonding (N⋅⋅⋅S distance of 2.93 Å), forming 2S‐2N squares between benzothiadiazoles of neighboring complexes. Strong π–π interactions (3.29–3.36 Å) between neighboring complexes likewise restrict solid‐state rotation of the potential benzothiadiazole rotator. Modest changes to UV–vis spectra upon metal coordination suggest that electronic properties are mostly independent of stator configuration.  more » « less
Award ID(s):
1903581 1903593
PAR ID:
10443076
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Organic Chemistry
Volume:
26
Issue:
36
ISSN:
1434-193X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Absorption of electronic acceptors in the accessible channels of an assembled triphenylamine (TPA) bis -urea macrocycle 1 enabled the study of electron transfer from the walls of the TPA framework to the encapsulated guests. The TPA host is isoskeletal in all host–guest structures analyzed with guests 2,1,3-benzothiadiazole, 2,5-dichlorobenzoquinone and I 2 loading in single-crystal-to-single-crystal transformations. Analysis of the crystal structures highlights how the spatial proximity and orientation of the TPA host and the entrapped guests influence their resulting photophysical properties and allow direct comparison of the different donor–acceptor complexes. Diffuse reflectance spectroscopy shows that upon complex formation 1·2,5-dichlorobenzoquinone exhibits a charge transfer (CT) transition. Whereas, the 1·2,1,3-benzothiadiazole complex undergoes a photoinduced electron transfer (PET) upon irradiation with 365 nm LEDs. The CT absorptions were also identified with the aid of time dependent density functional theory (TD-DFT) calculations. Cyclic voltammetry experiments show that 2,1,3-benzothiadiazole undergoes reversible reduction within the host–guest complex. Moreover, the optical band gaps of the host 1·2,5-dichlorobenzoquinone (1.66 eV), and host 1·2,1,3-benzothiadiazole (2.15 eV) complexes are significantly smaller as compared to the free host 1 material (3.19 eV). Overall, understanding this supramolecular electron transfer strategy should pave the way towards designing lower band gap inclusion complexes. 
    more » « less
  2. Inspection of the arrangement of tetrachloridopalladate( ii ) centers in a crystalline solid places the Cl of one [PdCl 4 ] 2− directly above the Pd center of its neighbor. A survey of the CSD provides 22 more examples of such MX 4 2− ⋯MX 4 2− complexes, with M being a Group 10 metal and X = Cl, Br, or I. Quantum calculations attribute this arrangement to a π-hole bond wherein Cl lone pairs of one unit transfer charge to vacant orbitals above the Pd center of its neighbor. The stabilizing effect of this bond must overcome the strong Coulombic repulsion between the two dianions, which is facilitated by a polarizable environment as would be present in a crystal, but much more so when the effects of the neighboring counterions are factored in. These conclusions are extended to other [MX 4 ] 2− homodimers, where M represents other members of Group 10, namely Ni and Pt. 
    more » « less
  3. The title compound, systematic name tris(μ2-perfluoro-o-phenylene)(μ2-3-phenyl-4H-chromen-4-one)-triangulo-trimercury, [Hg3(C6F4)3(C15H10O2)], crystallizes in the monoclinicP21/nspace group with one flavone (FLA) and one cyclic trimeric perfluoro-o-phenylenemercury (TPPM) molecule per asymmetric unit. The FLA molecule is located on one face of the TPPM acceptor and is linked in an asymmetric coordination of its carbonyl oxygen atom with two Hg centers of the TPPM macrocycle. The angular-shaped complexes pack in zigzag chains where they stackviatwo alternating TPPM–TPPM and FLA–FLA stacking patterns. The distance between the mean planes of the neighboring TPPM macrocycles in the stack is 3.445 (2) Å, and that between the benzo-γ-pyrone moieties of FLA is 3.328 (2) Å. The neighboring stacks are interdigitated through the shortened F...F, CH...F and CH...π contacts, forming a dense crystal structure. 
    more » « less
  4. Abstract Relative to other cyclic poly‐phosphorus species (that is,cyclo‐Pn), the planarcyclo‐P4group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4‐P4complexes are presented that can be viewed as the simple coordination of the [cyclo‐P4]2−dianion to a neutral metal fragment. Treatment of the neutral, molybdenumcyclo‐P4complexes Mo(η4‐P4)I2(CO)(CNArDipp2)2and Mo(η4‐P4)(CO)2(CNArDipp2)2with KC8produces the dianionic, three‐legged piano stool complexes, [Mo(η4‐P4)(CO)(CNArDipp2)2]2−and [Mo(η4‐P4)(CO)2(CNArDipp2)]2−, respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6‐benzene complex (η6‐C6H6)Mo(CO)3regarding the metal‐center valence state and electronic population of the planar‐cyclic ligand π system. 
    more » « less
  5. Abstract Series of lanthanide‐containing metallic coordination complexes are frequently presented as structurally analogous, due to the similar chemical and coordinative properties of the lanthanides. In the case of chiral (LnIII[15‐MCN(L‐pheHA)‐5])3+metallacrowns (MCs), which are well established supramolecular hosts, the formation of dimers templated by a dicarboxylate guest (muconate) in solution of neutral pH is herein shown to have a unique dependence on the identity of the MC's central lanthanide. Calorimetric data and nuclear magnetic resonance diffusion studies demonstrate that MCs containing larger or smaller lanthanides as the central metal only form monomeric host‐guest complexes whereas analogues with intermediate lanthanides (for example, Eu, Gd, Dy) participate in formation of dimeric host‐guest‐host compartments. The driving force for the dimerization event across the series is thought to be a competition between formation of highly stable MCs (larger lanthanides) and optimally linked bridging guests (smaller lanthanides). 
    more » « less