skip to main content


Title: Molecular Turnstiles Featuring Bicyclic Rotators: Solution and Solid‐State Investigation of Steric and Electronic Concerns
Abstract

A molecular rotor is created when a 2,1,3‐benzothiadiazole rotator is incorporated into a rigid arylene ethynylene framework supported by pyridine coordination to a metal (Ag+or PdCl2) guest. Comparisons to a similarly sized naphthyl rotator via1H NMR spectroscopy provide insights into the movement of these bicyclic rotators relative to the rigid stator framework. Chemical shift increases of 0.3 ppm, or more, upon metal complexation are consistent with through‐space interaction of the central arene with a bound PdCl2guest. Further study via X‐ray crystallography illustrates that rotation of the 2,1,3‐benzothiadiazole unit in the solid state is likely hampered by relatively strong chalcogen bonding (N⋅⋅⋅S distance of 2.93 Å), forming 2S‐2N squares between benzothiadiazoles of neighboring complexes. Strong π–π interactions (3.29–3.36 Å) between neighboring complexes likewise restrict solid‐state rotation of the potential benzothiadiazole rotator. Modest changes to UV–vis spectra upon metal coordination suggest that electronic properties are mostly independent of stator configuration.

 
more » « less
Award ID(s):
1903581 1903593
NSF-PAR ID:
10443076
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Organic Chemistry
Volume:
26
Issue:
36
ISSN:
1434-193X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Absorption of electronic acceptors in the accessible channels of an assembled triphenylamine (TPA) bis -urea macrocycle 1 enabled the study of electron transfer from the walls of the TPA framework to the encapsulated guests. The TPA host is isoskeletal in all host–guest structures analyzed with guests 2,1,3-benzothiadiazole, 2,5-dichlorobenzoquinone and I 2 loading in single-crystal-to-single-crystal transformations. Analysis of the crystal structures highlights how the spatial proximity and orientation of the TPA host and the entrapped guests influence their resulting photophysical properties and allow direct comparison of the different donor–acceptor complexes. Diffuse reflectance spectroscopy shows that upon complex formation 1·2,5-dichlorobenzoquinone exhibits a charge transfer (CT) transition. Whereas, the 1·2,1,3-benzothiadiazole complex undergoes a photoinduced electron transfer (PET) upon irradiation with 365 nm LEDs. The CT absorptions were also identified with the aid of time dependent density functional theory (TD-DFT) calculations. Cyclic voltammetry experiments show that 2,1,3-benzothiadiazole undergoes reversible reduction within the host–guest complex. Moreover, the optical band gaps of the host 1·2,5-dichlorobenzoquinone (1.66 eV), and host 1·2,1,3-benzothiadiazole (2.15 eV) complexes are significantly smaller as compared to the free host 1 material (3.19 eV). Overall, understanding this supramolecular electron transfer strategy should pave the way towards designing lower band gap inclusion complexes. 
    more » « less
  2. Inspection of the arrangement of tetrachloridopalladate( ii ) centers in a crystalline solid places the Cl of one [PdCl 4 ] 2− directly above the Pd center of its neighbor. A survey of the CSD provides 22 more examples of such MX 4 2− ⋯MX 4 2− complexes, with M being a Group 10 metal and X = Cl, Br, or I. Quantum calculations attribute this arrangement to a π-hole bond wherein Cl lone pairs of one unit transfer charge to vacant orbitals above the Pd center of its neighbor. The stabilizing effect of this bond must overcome the strong Coulombic repulsion between the two dianions, which is facilitated by a polarizable environment as would be present in a crystal, but much more so when the effects of the neighboring counterions are factored in. These conclusions are extended to other [MX 4 ] 2− homodimers, where M represents other members of Group 10, namely Ni and Pt. 
    more » « less
  3. Abstract

    The description of π‐donor amido moieties as ‘weak‐field’ ligands can belie the influence of metal‐ligand covalency on the overall ligand field of coordination complexes, which can in turn influence properties including the magnetic ground state and those of their excited states. In this contribution, the ligand fields of pseudo‐octahedral Ni(II) complexes supported by diarylamido pincer‐type amido ligands – three previously reported examples supported by asymmetric (2‐R‐phenanthridin‐4‐yl)(8‐quinolinyl)amido ligands (R = Cl, CF3,tBu;RL1) along with a new congener bearing a symmetricbis(8‐quinolinyl)amido ligand (BQA;L2) – were investigated in two ways. First, high‐frequency and ‐field electron paramagnetic resonance spectroscopy (HFEPR), SQUID magnetometry, and electronic absorption spectroscopy were used to determine the ligand field parameters. Second, the ability to electrochemically address ligand‐based oxidations despite metal‐centered SOMOs in the parentS=1 paramagnets was investigated, supported by time‐dependent density functional theory (TDDFT) identification of strong intervalence charge‐transfer (IVCT) transitions attributed to electronic communication between two Namidomoieties mediated by a Ni(II) bridge. These findings are discussed in the broader context of 3d transition metal coordination complexes of weak‐field π‐donor ligands.

     
    more » « less
  4. Abstract

    Designed site‐directed dimerization of the monoanion radicals of a π‐bowl in the solid state is reported. Dibenzo[a,g]corannulene (C28H14) was selected based on the asymmetry of the charge/spin localization in the C28H14.−anion. Controlled one‐electron reduction of C28H14with Cs metal in diglyme resulted in crystallization of a new dimer, [{Cs+(diglyme)}2(C28H14−C28H14)2−] (1), as revealed by single crystal X‐ray diffraction study performed in a broad range of temperatures. The C−C bond length between two C28H14.−bowls (1.560(8) Å) measured at −143 °C does not significantly change upon heating of the crystal to +67 °C. The single σ‐bond character of the C−C linker is confirmed by calculations. The trans‐disposition of two bowls in1is observed with the torsion angles around the central C−C bond of 172.3(5)° and 173.5(5)°. A systematic theoretical evaluation of dimerization pathways of C28H14.−radicals confirmed that the trans‐isomer found in1is energetically favored.

     
    more » « less
  5. Abstract

    Designed site‐directed dimerization of the monoanion radicals of a π‐bowl in the solid state is reported. Dibenzo[a,g]corannulene (C28H14) was selected based on the asymmetry of the charge/spin localization in the C28H14.−anion. Controlled one‐electron reduction of C28H14with Cs metal in diglyme resulted in crystallization of a new dimer, [{Cs+(diglyme)}2(C28H14−C28H14)2−] (1), as revealed by single crystal X‐ray diffraction study performed in a broad range of temperatures. The C−C bond length between two C28H14.−bowls (1.560(8) Å) measured at −143 °C does not significantly change upon heating of the crystal to +67 °C. The single σ‐bond character of the C−C linker is confirmed by calculations. The trans‐disposition of two bowls in1is observed with the torsion angles around the central C−C bond of 172.3(5)° and 173.5(5)°. A systematic theoretical evaluation of dimerization pathways of C28H14.−radicals confirmed that the trans‐isomer found in1is energetically favored.

     
    more » « less