- NSF-PAR ID:
- 10443106
- Date Published:
- Journal Name:
- Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems
- Page Range / eLocation ID:
- 152-160
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We study the fair allocation of mixture of indivisible goods and chores under lexicographic preferences---a subdomain of additive preferences. A prominent fairness notion for allocating indivisible items is envy-freeness up to any item (EFX). Yet, its existence and computation has remained a notable open problem. By identifying a class of instances with terrible chores, we show that determining the existence of an EFX allocation is NP-complete. This result immediately implies the intractability of EFX under additive preferences. Nonetheless, we propose a natural subclass of lexicographic preferences for which an EFX and Pareto optimal (PO) allocation is guaranteed to exist and can be computed efficiently for any mixed instance. Focusing on two weaker fairness notions, we investigate finding EF1 and Pareto optimal allocations for special instances with terrible chores, and show that MMS and PO allocations can be computed efficiently for any mixed instance with lexicographic preferences.more » « less
-
We study fair division of indivisible chores among n agents with additive disutility functions. Two well-studied fairness notions for indivisible items are envy-freeness up to one/any item (EF1/EFX) and the standard notion of economic efficiency is Pareto optimality (PO). There is a noticeable gap between the results known for both EF1 and EFX in the goods and chores settings. The case of chores turns out to be much more challenging. We reduce this gap by providing slightly relaxed versions of the known results on goods for the chores setting. Interestingly, our algorithms run in polynomial time, unlike their analogous versions in the goods setting.We introduce the concept of k surplus in the chores setting which means that up to k more chores are allocated to the agents and each of them is a copy of an original chore. We present a polynomial-time algorithm which gives EF1 and PO allocations with n-1 surplus.We relax the notion of EFX slightly and define tEFX which requires that the envy from agent i to agent j is removed upon the transfer of any chore from the i's bundle to j's bundle. We give a polynomial-time algorithm that in the chores case for 3 agents returns an allocation which is either proportional or tEFX. Note that proportionality is a very strong criterion in the case of indivisible items, and hence both notions we guarantee are desirable.
-
We study the problem of fair and efficient allocation of a set of indivisible chores to agents with additive cost functions. We consider the popular fairness notion of envy-freeness up to one good (EF1) with the efficiency notion of Pareto-optimality (PO). While it is known that EF1+PO allocations exists and can be computed in pseudo-polynomial time in the case of goods, the same problem is open for chores. Our first result is a strongly polynomial-time algorithm for computing an EF1+PO allocation for bivalued instances, where agents have (at most) two disutility values for the chores. To the best of our knowledge, this is the first non-trivial class of chores to admit an EF1+PO allocation and an efficient algorithm for its computation. We also study the problem of computing an envy-free (EF) and PO allocation for the case of divisible chores. While the existence of EF+PO allocation is known via competitive equilibrium with equal incomes, its efficient computation is open. Our second result shows that for bivalued instances, an EF+PO allocation can be computed in strongly polynomial-time.more » « less
-
We study markets with mixed manna, where m divisible goods and chores shall be divided among n agents to obtain a competitive equilibrium. Equilibrium allocations are known to satisfy many fairness and efficiency conditions. While a lot of recent work in fair division is restricted to linear utilities and chores, we focus on a substantial generalization to separable piecewise-linear and concave (SPLC) utilities and mixed manna. We first derive polynomial-time algorithms for markets with a constant number of items or a constant number of agents. Our main result is a polynomial-time algorithm for instances with a constant number of chores (as well as any number of goods and agents) under the condition that chores dominate the utility of the agents. Interestingly, this stands in contrast to the case when the goods dominate the agents utility in equilibrium, where the problem is known to be PPAD-hard even without chores.
-
We study the problem of fairly and efficiently allocating indivisible chores among agents with additive disutility functions. We consider the widely used envy-based fairness properties of EF1 and EFX in conjunction with the efficiency property of fractional Pareto-optimality (fPO). Existence (and computation) of an allocation that is simultaneously EF1/EFX and fPO are challenging open problems, and we make progress on both of them. We show the existence of an allocation that is- EF1 + fPO, when there are three agents,- EF1 + fPO, when there are at most two disutility functions,- EFX + fPO, for three agents with bivalued disutility functions.These results are constructive, based on strongly polynomial-time algorithms. We also investigate non-existence and show that an allocation that is EFX+fPO need not exist, even for two agents.