skip to main content


This content will become publicly available on June 1, 2024

Title: Code Comparison in Galaxy-scale Simulations with Resolved Supernova Feedback: Lagrangian versus Eulerian Methods
Abstract We present a suite of high-resolution simulations of an isolated dwarf galaxy using four different hydrodynamical codes: Gizmo , Arepo , Gadget , and Ramses . All codes adopt the same physical model, which includes radiative cooling, photoelectric heating, star formation, and supernova (SN) feedback. Individual SN explosions are directly resolved without resorting to subgrid models, eliminating one of the major uncertainties in cosmological simulations. We find reasonable agreement on the time-averaged star formation rates as well as the joint density–temperature distributions between all codes. However, the Lagrangian codes show significantly burstier star formation, larger SN-driven bubbles, and stronger galactic outflows compared to the Eulerian code. This is caused by the behavior in the dense, collapsing gas clouds when the Jeans length becomes unresolved: Gas in Lagrangian codes collapses to much higher densities than that in Eulerian codes, as the latter is stabilized by the minimal cell size. Therefore, more of the gas cloud is converted to stars and SNe are much more clustered in the Lagrangian models, amplifying their dynamical impact. The differences between Lagrangian and Eulerian codes can be reduced by adopting a higher star formation efficiency in Eulerian codes, which significantly enhances SN clustering in the latter. Adopting a zero SN delay time reduces burstiness in all codes, resulting in vanishing outflows as SN clustering is suppressed.  more » « less
Award ID(s):
2108470
NSF-PAR ID:
10443113
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
950
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
132
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We examine the properties of damped Lyman-α absorbers (DLAs) emerging from a single set of cosmological initial conditions in two state-of-the-art cosmological hydrodynamic simulations: simba and technicolor dawn. The former includes star formation and black hole feedback treatments that yield a good match with low-redshift galaxy properties, while the latter uses multifrequency radiative transfer to model an inhomogeneous ultraviolet background (UVB) self-consistently and is calibrated to match the Thomson scattering optical depth, UVB amplitude, and Ly α forest mean transmission at z > 5. Both simulations are in reasonable agreement with the measured stellar mass and star formation rate functions at z ≥ 3, and both reproduce the observed neutral hydrogen cosmological mass density, $\Omega _{\rm H\, \small{I}}(z)$. However, the DLA abundance and metallicity distribution are sensitive to the galactic outflows’ feedback and the UVB amplitude. Adopting a strong UVB and/or slow outflows underproduces the observed DLA abundance, but yields broad agreement with the observed DLA metallicity distribution. By contrast, faster outflows eject metals to larger distances, yielding more metal-rich DLAs whose observational selection may be more sensitive to dust bias. The DLA metallicity distribution in models adopting an H2-regulated star formation recipe includes a tail extending to [M/H] ≪ −3, lower than any DLA observed to date, owing to curtailed star formation in low-metallicity galaxies. Our results show that DLA observations play an important role in constraining key physical ingredients in galaxy formation models, complementing traditional ensemble statistics such as the stellar mass and star formation rate functions.

     
    more » « less
  2. null (Ed.)
    Context. The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: star birth and death, grain formation and destruction, and galactic inflows and outflows. Understanding such processes and their relative importance is essential to following galaxy evolution and the chemical enrichment through the cosmic epochs, and to interpreting current and future observations. Despite the importance of such topics, the contribution of different stellar sources to the chemical enrichment of galaxies, for example massive stars exploding as Type II supernovae (SNe) and low-mass stars, as well as the mechanisms driving the evolution of dust grains, such as for example grain growth in the ISM and destruction by SN shocks, remain controversial from both observational and theoretical viewpoints. Aims. In this work, we revise the current description of metal and dust evolution in the ISM of local low-metallicity dwarf galaxies and develop a new description of Lyman-break galaxies (LBGs) which are considered to be their high-redshift counterparts in terms of star formation, stellar mass, and metallicity. Our goal is to reproduce the observed properties of such galaxies, in particular (i) the peak in dust mass over total stellar mass (sMdust) observed within a few hundred million years; and (ii) the decrease in sMdust at a later time. Methods. We fitted spectral energy distribution of dwarf galaxies and LBGs with the “Code Investigating GALaxies Emission”, through which the total stellar mass, dust mass, and star formation rate are estimated. For some of the dwarf galaxies considered, the metal and gas content are available from the literature. We computed different prescriptions for metal and dust evolution in these systems (e.g. different initial mass functions for stars, dust condensation fractions, SN destruction, dust accretion in the ISM, and inflow and outflow efficiency), and we fitted the properties of the observed galaxies through the predictions of the models. Results. Only some combinations of models are able to reproduce the observed trend and simultaneously fit the observed properties of the galaxies considered. In particular, we show that (i) a top-heavy initial mass function that favours the formation of massive stars and a dust condensation fraction for Type II SNe of around 50% or more help to reproduce the peak of sMdust observed after ≈100 Myr from the beginning of the baryon cycle for both dwarf galaxies and LBGs; (ii) galactic outflows play a crucial role in reproducing the observed decline in sMdust with age and are more efficient than grain destruction from Type II SNe both in local galaxies and at high-redshift; (iii) a star formation efficiency (mass of gas converted into stars) of a few percent is required to explain the observed metallicity of local dwarf galaxies; and (iv) dust growth in the ISM is not necessary in order to reproduce the values of sMdust derived for the galaxies under study, and, if present, the effect of this process would be erased by galactic outflows. 
    more » « less
  3. Abstract We present an update to the framework called Simulator of Galaxy Millimeter/submillimeter Emission ( sígame ). sígame derives line emission in the far-infrared (FIR) for galaxies in particle-based cosmological hydrodynamics simulations by applying radiative transfer and physics recipes via a postprocessing step after completion of the simulation. In this version, a new technique is developed to model higher gas densities by parameterizing the probability distribution function (PDF) of the gas density in higher-resolution simulations run with the pseudo-Lagrangian, Voronoi mesh code arepo . The parameterized PDFs are used as a look-up table, and reach higher densities than in previous work. sígame v3 is tested on redshift z = 0 galaxies drawn from the simba cosmological simulation for eight FIR emission lines tracing vastly different phases of the interstellar medium. This version of sígame includes dust radiative transfer with S kirt and high-resolution photoionization models with C loudy , the latter sampled according to the density PDF of the arepo simulations to augment the densities in the cosmological simulation. The quartile distributions of the predicted line luminosities overlap with the observed range for nearby galaxies of similar star formation rate (SFR) for all but two emission lines: [O i ]63 and CO(3–2), which are overestimated by median factors of 1.3 and 1.0 dex, respectively, compared to the observed line–SFR relation of mixed-type galaxies. We attribute the remaining disagreement with observations to the lack of precise attenuation of the interstellar light on sub-grid scales (≲200 pc) and differences in sample selection. 
    more » « less
  4. ABSTRACT

    Recent observations indicate that galactic outflows are ubiquitous in high-redshift (high-z) galaxies, including normal star-forming galaxies, quasar hosts, and dusty star-forming galaxies (DSFGs). However, the impact of outflows on the evolution of their hosts is still an open question. Here, we analyse the star-formation histories and galactic outflow properties of galaxies in massive haloes ($10^{12}\, {\rm M}_{\odot }\ \lt\ M_{\rm vir}\ \lt\ 5\times 10^{12}\, {\rm M}_{\odot }$) at z ≳ 5.5 in three zoom-in cosmological simulations from the MassiveFIRE suite, as part of the Feedback In Realistic Environments (FIRE) project. The simulations were run with the FIRE-2 model, which does not include feedback from active galactic nuclei. The simulated galaxies resemble z > 4 DSFGs, with star-formation rates of $\sim\!{1000}\ {\rm M}_{\odot }\, \rm yr^{-1}$ and molecular gas masses of Mmol ∼ 1010 M⊙. However, the simulated galaxies are characterized by higher circular velocities than those observed in high-z DSFGs. The mass loading factors from stellar feedback are of the order of ∼0.1, implying that stellar feedback is inefficient in driving galactic outflows and gas is consumed by star formation on much shorter time-scales than it is expelled from the interstellar medium. We also find that stellar feedback is highly inefficient in self-regulating star formation in this regime, with an average integrated star formation efficiency (SFE) per dynamical time of 30 per cent. Finally, compared with FIRE-2 galaxies hosted in similarly massive haloes at lower redshift, we find lower mass loading factors and higher SFEs in the high-z sample. We argue that both effects originate from the higher total and gas surface densities that characterize high-z massive systems.

     
    more » « less
  5. ABSTRACT

    The hot component of the circumgalactic medium (CGM) around star-forming galaxies is detected as diffuse X-ray emission. The X-ray spectra from the CGM depend on the temperature and metallicity of the emitting plasma, providing important information about the feeding and feedback of the galaxy. The observed spectra are commonly fitted using simple one-temperature (1-T) or two-temperature (2-T) models. However, the actual temperature distribution of the gas can be complex because of the interaction between galactic outflows and halo gas. Here, we demonstrate this by analysing 3D hydrodynamical simulations of the CGM with a realistic outflow model. We investigate the physical properties of the simulated hot CGM, which shows a broad distribution in density, temperature, and metallicity. By constructing and fitting the simulated spectra, we show that, while the 1-T and 2-T models are able to fit the synthesized spectra reasonably well, the inferred temperature(s) does not bear much physical meaning. Instead, we propose a lognormal distribution as a more physical model. The lognormal model better fits the simulated spectra while reproducing the gas temperature distribution. We also show that when the star formation rate is high, the spectra inside the biconical outflows are distinct from those outside, as outflows are generally hotter and more metal enriched. Finally, we produce mock spectra for future missions with the eV-level spectral resolution, such as Athena, Lynx, the Hot Universe Baryon Surveyor, and theX-ray Imaging and Spectroscopy Mission.

     
    more » « less