ABSTRACT Recent observations indicate that galactic outflows are ubiquitous in high-redshift (high-z) galaxies, including normal star-forming galaxies, quasar hosts, and dusty star-forming galaxies (DSFGs). However, the impact of outflows on the evolution of their hosts is still an open question. Here, we analyse the star-formation histories and galactic outflow properties of galaxies in massive haloes ($$10^{12}\, {\rm M}_{\odot }\ \lt\ M_{\rm vir}\ \lt\ 5\times 10^{12}\, {\rm M}_{\odot }$$) at z ≳ 5.5 in three zoom-in cosmological simulations from the MassiveFIRE suite, as part of the Feedback In Realistic Environments (FIRE) project. The simulations were run with the FIRE-2 model, which does not include feedback from active galactic nuclei. The simulated galaxies resemble z > 4 DSFGs, with star-formation rates of $$\sim\!{1000}\ {\rm M}_{\odot }\, \rm yr^{-1}$$ and molecular gas masses of Mmol ∼ 1010 M⊙. However, the simulated galaxies are characterized by higher circular velocities than those observed in high-z DSFGs. The mass loading factors from stellar feedback are of the order of ∼0.1, implying that stellar feedback is inefficient in driving galactic outflows and gas is consumed by star formation on much shorter time-scales than it is expelled from the interstellar medium. We also find that stellar feedback is highly inefficient in self-regulating star formation in this regime, with an average integrated star formation efficiency (SFE) per dynamical time of 30 per cent. Finally, compared with FIRE-2 galaxies hosted in similarly massive haloes at lower redshift, we find lower mass loading factors and higher SFEs in the high-z sample. We argue that both effects originate from the higher total and gas surface densities that characterize high-z massive systems.
more »
« less
Code Comparison in Galaxy-scale Simulations with Resolved Supernova Feedback: Lagrangian versus Eulerian Methods
Abstract We present a suite of high-resolution simulations of an isolated dwarf galaxy using four different hydrodynamical codes: Gizmo , Arepo , Gadget , and Ramses . All codes adopt the same physical model, which includes radiative cooling, photoelectric heating, star formation, and supernova (SN) feedback. Individual SN explosions are directly resolved without resorting to subgrid models, eliminating one of the major uncertainties in cosmological simulations. We find reasonable agreement on the time-averaged star formation rates as well as the joint density–temperature distributions between all codes. However, the Lagrangian codes show significantly burstier star formation, larger SN-driven bubbles, and stronger galactic outflows compared to the Eulerian code. This is caused by the behavior in the dense, collapsing gas clouds when the Jeans length becomes unresolved: Gas in Lagrangian codes collapses to much higher densities than that in Eulerian codes, as the latter is stabilized by the minimal cell size. Therefore, more of the gas cloud is converted to stars and SNe are much more clustered in the Lagrangian models, amplifying their dynamical impact. The differences between Lagrangian and Eulerian codes can be reduced by adopting a higher star formation efficiency in Eulerian codes, which significantly enhances SN clustering in the latter. Adopting a zero SN delay time reduces burstiness in all codes, resulting in vanishing outflows as SN clustering is suppressed.
more »
« less
- Award ID(s):
- 2108470
- PAR ID:
- 10443113
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 950
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 132
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a suite of six high-resolution chemodynamical simulations of isolated galaxies, spanning observed disk-dominated environments on the star-forming main sequence, as well as quenched, bulge-dominated environments. We compare and contrast the physics driving star formation and stellar feedback among the galaxies, with a view to modeling these processes in cosmological simulations. We find that the mass loading of galactic outflows is coupled to the clustering of supernova explosions, which varies strongly with the rate of galactic rotation Ω =vcirc/Rvia the Toomre length, leading to smoother gas disks in the bulge-dominated galaxies. This sets an equation of state in the star-forming gas that also varies strongly with Ω, so that the bulge-dominated galaxies have higher midplane densities, lower velocity dispersions, and higher molecular gas fractions than their main-sequence counterparts. The star formation rate in five out of six galaxies is independent of Ω and is consistent with regulation by the midplane gas pressure alone. In the sixth galaxy, which has the most centrally concentrated bulge and thus the highest Ω, we reproduce dynamical suppression of the star formation efficiency in agreement with observations. This produces a transition away from pressure-regulated star formation.more » « less
-
ABSTRACT Observations show a tight correlation between the stellar mass of galaxies and their gas-phase metallicity (MZR). This relation evolves with redshift, with higher redshift galaxies being characterized by lower metallicities. Understanding the physical origin of the slope and redshift evolution of the MZR may provide important insight into the physical processes underpinning it: star formation, feedback, and cosmological inflows. While theoretical models ascribe the shape of the MZR to the lower efficiency of galactic outflows in more massive galaxies, what drives its evolution remains an open question. In this letter, we analyse how the MZR evolves over z = 0–3, combining results from the FIREbox cosmological volume simulation with analytical models. Contrary to a frequent assertion in the literature, we find that the evolution of the gas fraction does not contribute significantly to the redshift evolution of the MZR. Instead, we show that the latter is driven by the redshift dependence of the inflow metallicity, outflow metallicity, and mass loading factor, whose relative importance depends on stellar mass. These findings also suggest that the evolution of the MZR is not explained by galaxies moving along a fixed surface in the space spanned by stellar mass, gas-phase metallicity, and star formation rate.more » « less
-
Abstract Feedback likely plays a crucial role in resolving discrepancies between observations and theoretical predictions of dwarf galaxy properties. Stellar feedback was once believed to be sufficient to explain these discrepancies, but it has thus far failed to fully reconcile theory and observations. The recent discovery of energetic galaxy-wide outflows in dwarf galaxies hosting active galactic nuclei (AGNs) suggests that AGN feedback may have a larger role in the evolution of dwarf galaxies than previously suspected. In order to assess the relative importance of stellar versus AGN feedback in these galaxies, we perform a detailed Keck/KCWI optical integral field spectroscopic study of a sample of low-redshift star-forming (SF) dwarf galaxies that show outflows in ionized gas in their Sloan Digital Sky Survey spectra. We characterize the outflows and compare them to observations of AGN-driven outflows in dwarfs. We find that SF dwarfs have outflow components that have comparable widths (W80) to those of outflows in AGN dwarfs, but are much less blueshifted, indicating that SF dwarfs have significantly slower outflows than their AGN counterparts. Outflows in SF dwarfs are spatially resolved and significantly more extended than those in AGN dwarfs. The mass-loss, momentum, and energy rates of star-formation-driven outflows are much lower than those of AGN-driven outflows. Our results indicate that AGN feedback in the form of gas outflows may play an important role in dwarf galaxies and should be considered along with SF feedback in models of dwarf galaxy evolution.more » « less
-
Star formation in galaxies is regulated by turbulence, outflows, gas heating and cloud dispersal -- processes which depend sensitively on the properties of the interstellar medium (ISM) into which supernovae (SNe) explode. Unfortunately, direct measurements of ISM environments around SNe remain scarce, as SNe are rare and often distant. Here we demonstrate a new approach: mapping the ISM around the massive stars that are soon to explode. This provides a much larger census of explosion sites than possible with only SNe, and allows comparison with sensitive, high-resolution maps of the atomic and molecular gas from the Jansky VLA and ALMA. In the well-resolved Local Group spiral M33, we specifically observe the environments of red supergiants (RSGs, progenitors of Type II SNe), Wolf-Rayet stars (WRs, tracing stars >30 M⊙, and possibly future stripped-envelope SNe), and supernova remnants (SNRs, locations where SNe have exploded). We find that massive stars evolve not only in dense, molecular-dominated gas (with younger stars in denser gas), but also a substantial fraction (∼45\% of WRs; higher for RSGs) evolve in lower-density, atomic-gas-dominated, inter-cloud media. We show that these measurements are consistent with expectations from different stellar-age tracer maps, and can be useful for validating SN feedback models in numerical simulations of galaxies. Along with the discovery of a 20-pc diameter molecular gas cavity around a WR, these findings re-emphasize the importance of pre-SN/correlated-SN feedback evacuating the dense gas around massive stars before explosion, and the need for high-resolution (down to pc-scale) surveys of the multi-phase ISM in nearby galaxies.more » « less
An official website of the United States government

