skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data for: The 30 Doradus Molecular Cloud at 0.4 pc Resolution with ALMA: Physical Properties and the Boundedness of CO-emitting Structures
12CO and 13CO emission maps of the 30 Doradus molecular cloud in the Large Magellanic Cloud, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) during Cycle 7. See the associated article in the Astrophysical Journal, and README file, for details. Please cite the article if you use these data.  more » « less
Award ID(s):
2009849
PAR ID:
10443120
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
University of Illinois at Urbana-Champaign
Date Published:
Edition / Version:
1
Subject(s) / Keyword(s):
Radio astronomy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The prevalent point cloud compression (PCC) standards of today are utilized to encode various types of point cloud data, allowing for reasonable bandwidth and storage usage. With increasing demand for high-fidelity three-dimensional (3D) models for a large variety of applications, including immersive visual communication, Augmented reality (AR) and Virtual Reality (VR), navigation, autonomous driving, and smart city, point clouds are seeing increasing usage and development to meet the increasing demands. However, with the advancements in 3D modelling and sensing, the amount of data required to accurately depict such representations and models is likewise ballooning to increasingly large proportions, leading to the development and standardization of the point cloud compression standards. In this article, we provide an overview of some topical and popular MPEG point cloud compression (PCC) standards. We discuss the development and applications of the Geometry-based PCC (G-PCC) and Video-based PCC (V-PCC) standards as they escalate in importance in an era of virtual reality and machine learning. Finally, we conclude our article describing the future research directions and applications of the PCC standards of today. 
    more » « less
  2. In this article, we survey existing academic and commercial efforts to provide Field-Programmable Gate Array (FPGA) acceleration in datacenters and the cloud. The goal is a critical review of existing systems and a discussion of their evolution from single workstations with PCI-attached FPGAs in the early days of reconfigurable computing to the integration of FPGA farms in large-scale computing infrastructures. From the lessons learned, we discuss the future of FPGAs in datacenters and the cloud and assess the challenges likely to be encountered along the way. The article explores current architectures and discusses scalability and abstractions supported by operating systems, middleware, and virtualization. Hardware and software security becomes critical when infrastructure is shared among tenants with disparate backgrounds. We review the vulnerabilities of current systems and possible attack scenarios and discuss mitigation strategies, some of which impact FPGA architecture and technology. The viability of these architectures for popular applications is reviewed, with a particular focus on deep learning and scientific computing. This work draws from workshop discussions, panel sessions including the participation of experts in the reconfigurable computing field, and private discussions among these experts. These interactions have harmonized the terminology, taxonomy, and the important topics covered in this manuscript. 
    more » « less
  3. In this article, we survey existing academic and commercial efforts to provide Field-Programmable Gate Array (FPGA) acceleration in datacenters and the cloud. The goal is a critical review of existing systems and a discussion of their evolution from single workstations with PCI-attached FPGAs in the early days of reconfigurable computing to the integration of FPGA farms in large-scale computing infrastructures. From the lessons learned, we discuss the future of FPGAs in datacenters and the cloud and assess the challenges likely to be encountered along the way. The article explores current architectures and discusses scalability and abstractions supported by operating systems, middleware, and virtualization. Hardware and software security becomes critical when infrastructure is shared among tenants with disparate backgrounds. We review the vulnerabilities of current systems and possible attack scenarios and discuss mitigation strategies, some of which impact FPGA architecture and technology. The viability of these architectures for popular applications is reviewed, with a particular focus on deep learning and scientific computing. This work draws from workshop discussions, panel sessions including the participation of experts in the reconfigurable computing field, and private discussions among these experts. These interactions have harmonized the terminology, taxonomy, and the important topics covered in this manuscript. 
    more » « less
  4. Cloud computing has become crucial for the commercial world due to its computational capacity, storage capabilities, scalability, software integration, and billing convenience. Initially, clouds were relatively homogeneous, but now diverse machine configurations in heterogeneous clouds are recognized for their improved application performance and energy efficiency. This shift is driven by the integration of various hardware to accommodate diverse user applications. However, alongside these advancements, security threats like micro-architectural attacks are increasing concerns for cloud providers and users. Studies like Repttack and Cloak & Co-locate highlight the vulnerability of heterogeneous clouds to co-location attacks, where attacker and victim instances are placed together. The ease of these attacks isn’t solely linked to heterogeneity but also correlates with how heterogeneous the target systems are. Despite this, no numerical metrics exist to quantify cloud heterogeneity. This article introduces the Heterogeneity Score (HeteroScore) to evaluate server setups and instances. HeteroScore significantly correlates with co-location attack security. The article also proposes strategies to balance diversity and security. This study pioneers the quantitative analysis connecting cloud heterogeneity and infrastructure security. 
    more » « less
  5. Summary We investigate the challenges of building an end‐to‐end cloud pipeline for real‐time intelligent visual inspection system for use in automotive manufacturing. Current methods of visual detection in automotive assembly are highly labor intensive, and thus prone to errors. An automated process is sought that can operate within the real‐time constraints of the assembly line and can reduce errors. Components of the cloud pipeline include capture of a large set of high‐definition images from a camera setup at the assembly location, transfer and storage of the images as needed, execution of object detection, and notification to a human operator when a fault is detected. The end‐to‐end execution must complete within a fixed time frame before the next car arrives in the assembly line. In this article, we report the design, development, and experimental evaluation of the tradeoffs of performance, accuracy, and scalability for a cloud system. 
    more » « less