Using tags within a mark-recapture framework allows researchers to assess population size and connectivity. Such methods have been applied in coastal zone habitats to monitor salt marsh restoration success by comparing the movement patterns of Mummichogs (Fundulus heteroclitus) between restored and natural marshes. Visible Implant Elastomer (VIE) tags are commonly used to tag small fish like Mummichogs, though the retention and survival of small fish using this method varies between studies, producing uncertainty during mark-recapture-based approaches. To address this, we conducted a laboratory experiment to determine the rate of tag loss and mortality of VIE tags on Mummichogs of two size classes (greater or less than 61 mm) and across different taggers. Tag loss and mortality increased over time, and the latter significantly varied between taggers. We then developed a predictive model, R package ‘retmort’, to account for the effect of this increase on mark-recapture studies. When adapted to a series of published works, our model provided rational estimates of tagging error for multiple species and tagging methods. Of the case studies the model was applied to (n = 26), 15 resulted in a percent standard error greater than 5%, signaling a significant percent of error due to uncounted, tagged animals. By not accounting for these individuals, recapture studies, particularly those that assess restoration efforts and coastal resilience, could underestimate the effects of those projects, leading to superfluous restoration efforts and erroneous recapture data for species with low tag retention and high mortality rates.
more »
« less
A method for long‐term retention of pop‐up satellite archival tags ( PSATs ) on small migratory fishes
Abstract Achieving long‐term retention of pop‐up satellite archival tags (PSATs) has proven difficult for all fishes but is particularly challenging for small migrant species due to the relatively large size of tags. In this study, the authors tested the latest and smallest PSAT model on the market, the mark‐report satellite tag (mrPAT), and developed a simple, cost‐effective method of tag attachment on sheepshead Archosargus probatocephalus (Walbaum 1792), a small marine fish. During laboratory trials, the method of tag attachment used in this study outperformed the existing methods with two c . 40 cm fish retaining their tags for 3 months (the duration of the laboratory study). During field deployments, data were successfully obtained for 17 of the 25 tagged fish [37–50 cm fork length (FL)]. Of these, 14 tags (82%) remained on the fish until the pre‐programmed release date resulting in tag retention times of up to 172 days (mean: 140 days). The investigation represents the first extensive study into the feasibility of PSATs for monitoring fishes in this size range. The authors demonstrate that their method of attachment and this latest PSAT model are feasible for c . 5‐month deployments on fishes that are relatively small ( c . 45 cm FL). These results with A. probatocephalus represent a potentially significant advance in PSAT methodology for fishes of this size. Future investigations are needed to determine if this method is transferrable to other species in the same size range.
more »
« less
- Award ID(s):
- 2125684
- PAR ID:
- 10443171
- Date Published:
- Journal Name:
- Journal of Fish Biology
- Volume:
- 102
- Issue:
- 5
- ISSN:
- 0022-1112
- Page Range / eLocation ID:
- 1029 to 1039
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Otolith microstructure analysis provides critical biological and ecological information about the early life history of fishes. This information is particularly important to interpret and predict population dynamics for socio‐economically important fisheries species; nonetheless, several key assumptions underpin the use of otolith techniques. The authors validated the use of this analysis for cabezon (Scorpaenichthys marmoratus; Ayres, 1854), a long‐lived, large‐bodied cottid constituent of nearshore fisheries from Baja California, Mexico, to Alaska, USA. To test three critical assumptions, the authors coupled otolith and morphometric analyses from an opportunistic rearing study of cabezon eggs and larvae with a long‐term time series of juvenile cabezon field collections. The authors confirmed the daily otolith increment deposition in laboratory‐reared larvae, identified the timing of first otolith increment deposition and examined the relationship between otolith growth and somatic growth in field‐collected juveniles, validating the use of otolith microstructure analysis in biological and ecological interpretations of early life‐history traits for this species. The findings of this study also indicated that the absorption of yolk‐sac reserves, and likely the transition to exogenous feeding, plays an important role in regulating otolith increment deposition. Finally, the authors found within‐brood size‐at‐age variation, which may be an advantage for young fish in prey‐limited environments.more » « less
-
Rapid advancements in biologging technology have led to unprecedented insights into animal behaviour, but testing the effects of biologgers on tagged animals is necessary for both scientific and ethical reasons. Here, we measured how quickly 13 wild-caught and captively isolated common vampire bats ( Desmodus rotundus ) habituated to mock proximity sensors glued to their dorsal fur. To assess habituation, we scored video-recorded behaviours every minute from 18.00 to 06.00 for 3 days, then compared the rates of grooming directed to the sensor tag versus to their own body. During the first hour, the mean tag-grooming rate declined dramatically from 53% of sampled time (95% CI = 36–65%, n = 6) to 16% (8–24%, n = 9), and down to 4% by hour 5 (1–6%, n = 13), while grooming of the bat's own body did not decline. When tags are firmly attached, isolated individual vampire bats mostly habituate within an hour of tag attachment. In two cases, however, tags became loose before falling off causing the bats to dishabituate. For tags glued to fur, behavioural data are likely to be impacted immediately after the tag is attached and when it is loose before it falls off.more » « less
-
Cellular identity and fate are determined by the proteins synthesized. Initiation of mRNA translation requires an important translation factor, eIF4G (ifg-1 in C. elegans). Embryos use mRNA translational control for spatial and temporal regulation of protein synthesis. Using CRISPR engineering, we added in-frame epitope and fluorescent tags (V5, Myc, Flag, GFP, and mCherry) to IFG-1. Tagged forms containing the V5 epitope caused embryonic arrest. Internal disruption of the V5 tag restored viability at 25°C. This study demonstrates that the molecular nature of a small epitope tag is sufficient to disrupt C. elegans embryogenesis.more » « less
-
Abstract Honey bees are vital pollinators and can be used to monitor the landscape. Consequently, interest in mounting technologies onto bees to track foraging behaviors is increasing. The barrier to entry is steep, in part because the methodology for fastening tags to bees, and the success rates, are often missing from publications. We tested six factors suspected to influence the presence and tag retention rates of nurse honey bees after their introduction to hives, and followed bees until foraging age. We also compared reintroducing foragers to their maternal colony using the best method for nurse bees to releasing them in front of their maternal hive and allowing them to fly back unaided. Nurses were most likely to be present in the hive with their tag still attached when introduced using an introduction cage at night. Glue type was important, but may further be influenced by tag material. Foragers were most likely to be present with a tag attached if released in front of their colony. Preparation and introduction techniques influence the likelihood of tagged honey bee survival and of the tags remaining attached, which should be considered when executing honey bee tagging and tracking experiments.more » « less
An official website of the United States government

