This paper considers the problems of maximizing a continuous non-monotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine learning, economics, and communication systems. The main result is
the first 1/2-approximation algorithm for continuous submodular function maximization; this approximation factor of 1/2 is the best possible for algorithms that only query the objective function at polynomially many points. For the special case of DR-submodular maximization, i.e. when the submodular functions are also coordinate-wise concave along all coordinates, we provide a different 1 2-approximation algorithm that runs in quasi-linear time.
more »
« less
Fast First-Order Methods for Monotone Strongly DR-Submodular Maximization
Continuous DR-submodular functions are a class of functions that satisfy the Diminishing Returns (DR) property, which implies that they are concave along non-negative directions. Existing works have studied monotone continuous DR-submodular maximization subject to a convex constraint and have proposed efficient algorithms with approximation guarantees. However, in many applications, e. g., computing the stability number of a graph and mean-field inference for probabilistic log-submodular models, the DR-submodular function has the additional property of being strongly concave along non-negative directions that could be utilized for obtaining faster convergence rates. In this paper, we first introduce and characterize the class of strongly DR-submodular functions and show how such a property implies strong concavity along non-negative directions. Then, we study L-smooth monotone strongly DR-submodular functions that have bounded curvature, and we show how to exploit such additional structure to obtain algorithms with improved approximation guarantees and faster convergence rates for the maximization problem. In particular, we propose the SDRFW algorithm that matches the provably optimal approximation ratio after only iterations, where c ∈ [0,1] and μ ≥ 0 are the curvature and the strong DR-submodularity parameter. Furthermore, we study the Projected Gradient Ascent (PGA) method for this problem and provide a refined analysis of the algorithm with an improved approximation ratio (compared to ½ in prior works) and a linear convergence rate. Given that both algorithms require knowledge of the smoothness parameter L, we provide a novel characterization of L for DR-submodular functions showing that in many cases, computing L could be formulated as a convex optimization problem, i. e., a geometric program, that could be solved efficiently. Experimental results illustrate and validate the efficiency and effectiveness of our algorithms.
more »
« less
- Award ID(s):
- 2023166
- NSF-PAR ID:
- 10443284
- Editor(s):
- Berry, Jonathan; Shmoys, David; Cowen, Lenore; Naumann, Uwe
- Date Published:
- Journal Name:
- Proceedings of SIAM Conference on Applied and Computational Discrete Algorithms
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a $1-1/e-\epsilon$ approximation for monotone functions and a $1/e-\epsilon$ approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is $O(\log^2{n}/\epsilon^3)$, which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a $1/e-\epsilon$ approximation using $O(\log(n/\epsilon) \log(1/\epsilon) \log(n+m)/ \epsilon^2)$ parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a $1-1/e-\epsilon$ approximation in $O(\log(n/\epsilon)\log(m)/\epsilon^2)$ parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective (Mahoney et al., 2016). Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function.more » « less
-
Kraus, Andreas (Ed.)In this paper we study the fundamental problems of maximizing a continuous nonmonotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine learning, economics, and communication systems. Our main result is the first 1 2 -approximation algorithm for continuous submodular function maximization; this approximation factor of 1 2 is the best possible for algorithms that only query the objective function at polynomially many points. For the special case of DR-submodular maximization, i.e. when the submodular function is also coordinate-wise concave along all coordinates, we provide a different 1 2 -approximation algorithm that runs in quasi-linear time. Both these results improve upon prior work (Bian et al., 2017a,b; Soma and Yoshida, 2017). Our first algorithm uses novel ideas such as reducing the guaranteed approximation problem to analyzing a zero-sum game for each coordinate, and incorporates the geometry of this zero-sum game to fix the value at this coordinate. Our second algorithm exploits coordinate-wise concavity to identify a monotone equilibrium condition sufficient for getting the required approximation guarantee, and hunts for the equilibrium point using binary search. We further run experiments to verify the performance of our proposed algorithms in related machine learning applications.more » « less
-
null (Ed.)We introduce the problem of optimal congestion control in cache networks, whereby both rate allocations and content placements are optimized jointly. We formulate this as a maximization problem with non-convex constraints, and propose solving this problem via (a) a Lagrangian barrier algorithm and (b) a convex relaxation. We prove different optimality guarantees for each of these two algorithms; our proofs exploit the fact that the non-convex constraints of our problem involve DR-submodular functions.more » « less
-
We study the problem of differentially private constrained maximization of decomposable submodular functions. A submodular function is decomposable if it takes the form of a sum of submodular functions. The special case of maximizing a monotone, decomposable submodular function under cardinality constraints is known as the Combinatorial Public Projects (CPP) problem (Papadimitriou, Schapira, and Singer 2008). Previous work by Gupta et al. (2010) gave a differentially private algorithm for the CPP problem. We extend this work by designing differentially private algorithms for both monotone and non-monotone decomposable submodular maximization under general matroid constraints, with competitive utility guarantees. We complement our theoretical bounds with experiments demonstrating improved empirical performance.more » « less