skip to main content


This content will become publicly available on July 20, 2024

Title: Investigating the Impact of Skill-Related Videos on Online Learning
Many online learning platforms and MOOCs incorporate some amount of video-based content into their platform, but there are few randomized controlled experiments that evaluate the effectiveness of the different methods of video integration. Given the large amount of publicly available educational videos, an investigation into this content's impact on students could help lead to more effective and accessible video integration within learning platforms. In this work, a new feature was added into an existing online learning platform that allowed students to request skill-related videos while completing their online middle-school mathematics assignments. A total of 18,535 students participated in two large-scale randomized controlled experiments related to providing students with publicly available educational videos. The first experiment investigated the effect of providing students with the opportunity to request these videos, and the second experiment investigated the effect of using a multi-armed bandit algorithm to recommend relevant videos. Additionally, this work investigated which features of the videos were significantly predictive of students' performance and which features could be used to personalize students' learning. Ultimately, students were mostly disinterested in the skill-related videos, preferring instead to use the platforms existing problem-specific support, and there was no statistically significant findings in either experiment. Additionally, while no video features were significantly predictive of students' performance, two video features had significant qualitative interactions with students' prior knowledge, which showed that different content creators were more effective for different groups of students. These findings can be used to inform the design of future video-based features within online learning platforms and the creation of different educational videos specifically targeting higher or lower knowledge students. The data and code used in this work can be found at https://osf.io/cxkzf/.  more » « less
Award ID(s):
1917545 1940076
NSF-PAR ID:
10443311
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
L@S '23: Proceedings of the Tenth ACM Conference on Learning @ Scale
Page Range / eLocation ID:
4 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many online learning platforms and MOOCs incorporate some amount of video-based content into their platform, but there are few randomized controlled experiments that evaluate the effectiveness of the different methods of video integration. Given the large amount of publicly available educational videos, an investigation into this content’s impact on students could help lead to more effective and accessible video integration within learning platforms. In this work, a new feature was added into an existing online learning platform that allowed students to request skill-related videos while completing their online middle-school mathematics assignments. A total of 18,535 students participated in two large-scale randomized controlled experiments related to providing students with publicly available educational videos. The first experiment investigated the effect of providing students with the opportunity to request these videos, and the second experiment investigated the effect of using a multi-armed bandit algorithm to recommend relevant videos. Additionally, this work investigated which features of the videos were significantly predictive of students’ performance and which features could be used to personalize students’ learning. Ultimately, students were mostly disinterested in the skill-related videos, preferring instead to use the platforms existing problem specific support, and there was no statistically significant findings in either experiment. Additionally, while no video features were significantly predictive of students’ performance, two video features had significant qualitative interactions with students’ prior knowledge, which showed that different content creators were more effective for different groups of students. These findings can be used to inform the design of future video-based features within online learning platforms and the creation of different educational videos specifically targeting higher or lower knowledge students. The data and code used in this work can be found at https://osf.io/cxkzf/. 
    more » « less
  2. Many online learning platforms and MOOCs incorporate some amount of video-based content into their platform, but there are few randomized controlled experiments that evaluate the effective- ness of the different methods of video integration. Given the large amount of publicly available educational videos, an investigation into this content’s impact on students could help lead to more ef- fective and accessible video integration within learning platforms. In this work, a new feature was added into an existing online learn- ing platform that allowed students to request skill-related videos while completing their online middle-school mathematics assign- ments. A total of 18,535 students participated in two large-scale randomized controlled experiments related to providing students with publicly available educational videos. The first experiment investigated the effect of providing students with the opportunity to request these videos, and the second experiment investigated the effect of using a multi-armed bandit algorithm to recommend relevant videos. Additionally, this work investigated which features of the videos were significantly predictive of students’ performance and which features could be used to personalize students’ learning. Ultimately, students were mostly disinterested in the skill-related videos, preferring instead to use the platforms existing problem- specific support, and there was no statistically significant findings in either experiment. Additionally, while no video features were significantly predictive of students’ performance, two video fea- tures had significant qualitative interactions with students’ prior knowledge, which showed that different content creators were more effective for different groups of students. These findings can be used to inform the design of future video-based features within online learning platforms and the creation of different educational videos specifically targeting higher or lower knowledge students. The data and code used in this work is hosted by the Open Science Foundation. 
    more » « less
  3. Many online learning platforms and MOOCs incorporate some amount of video-based content into their platform, but there are few randomized controlled experiments that evaluate the effective- ness of the different methods of video integration. Given the large amount of publicly available educational videos, an investigation into this content’s impact on students could help lead to more ef- fective and accessible video integration within learning platforms. In this work, a new feature was added into an existing online learn- ing platform that allowed students to request skill-related videos while completing their online middle-school mathematics assign- ments. A total of 18,535 students participated in two large-scale randomized controlled experiments related to providing students with publicly available educational videos. The first experiment investigated the effect of providing students with the opportunity to request these videos, and the second experiment investigated the effect of using a multi-armed bandit algorithm to recommend relevant videos. Additionally, this work investigated which features of the videos were significantly predictive of students’ performance and which features could be used to personalize students’ learning. Ultimately, students were mostly disinterested in the skill-related videos, preferring instead to use the platforms existing problem- specific support, and there was no statistically significant findings in either experiment. Additionally, while no video features were significantly predictive of students’ performance, two video fea- tures had significant qualitative interactions with students’ prior knowledge, which showed that different content creators were more effective for different groups of students. These findings can be used to inform the design of future video-based features within online learning platforms and the creation of different educational videos specifically targeting higher or lower knowledge students. 
    more » « less
  4. Many online learning platforms and MOOCs incorporate some amount of video-based content into their platform, but there are few randomized controlled experiments that evaluate the effective- ness of the different methods of video integration. Given the large amount of publicly available educational videos, an investigation into this content’s impact on students could help lead to more ef- fective and accessible video integration within learning platforms. In this work, a new feature was added into an existing online learn- ing platform that allowed students to request skill-related videos while completing their online middle-school mathematics assign- ments. A total of 18,535 students participated in two large-scale randomized controlled experiments related to providing students with publicly available educational videos. The first experiment investigated the effect of providing students with the opportunity to request these videos, and the second experiment investigated the effect of using a multi-armed bandit algorithm to recommend relevant videos. Additionally, this work investigated which features of the videos were significantly predictive of students’ performance and which features could be used to personalize students’ learning. Ultimately, students were mostly disinterested in the skill-related videos, preferring instead to use the platforms existing problem- specific support, and there was no statistically significant findings in either experiment. Additionally, while no video features were significantly predictive of students’ performance, two video fea- tures had significant qualitative interactions with students’ prior knowledge, which showed that different content creators were more effective for different groups of students. These findings can be used to inform the design of future video-based features within online learning platforms and the creation of different educational videos specifically targeting higher or lower knowledge students. 
    more » « less
  5. As online learning platforms become more ubiquitous throughout various curricula, there is a growing need to evaluate the effectiveness of these platforms and the different methods used to structure online education and tutoring. Towards this endeavor, some platforms have performed randomized controlled experiments to compare different user experiences, curriculum structures, and tutoring strategies in order to ensure the effectiveness of their platform and personalize the education of the students using it. These experiments are typically analyzed on an individual basis in order to reveal insights on a specific aspect of students’ online educational experience. In this work, the data from 50,752 instances of 30,408 students participating in 50 different experiments conducted at scale within the online learning platform ASSISTments were aggregated and analyzed for consistent trends across experiments. By combining common experimental conditions and normalizing the dependent measures between experiments, this work has identified multiple statistically significant insights on the impact of various skill mastery requirements, strategies for personalization, and methods for tutoring in an online setting. This work can help direct further experimentation and inform the design and improvement of new and existing online learning platforms. The anonymized data compiled for this work are hosted by the Open Science Foundation and can be found at https://osf.io/59shv/. 
    more » « less