Abstract Basal melting of Antarctic ice shelves is primarily driven by heat delivery from warm Circumpolar Deep Water. Here we classify near-shelf water masses in an eddy-resolving numerical model of the Southern Ocean to develop a unified view of warm water intrusion onto the Antarctic continental shelf. We identify four regimes on seasonal timescales. In regime 1 (East Antarctica), heat intrusions are driven by easterly winds via Ekman dynamics. In regime 2 (West Antarctica), intrusion is primarily determined by the strength of a shelf-break undercurrent. In regime 3, the warm water cycle on the shelf is in antiphase with dense shelf water production (Adélie Coast). Finally, in regime 4 (Weddell and Ross seas), shelf-ward warm water inflow occurs along the western edge of canyons during periods of dense shelf water outflow. Our results advocate for a reformulation of the traditional annual-mean regime classification of the Antarctic continental shelf. 
                        more » 
                        « less   
                    
                            
                            Seasonal variability of ocean circulation near the Dotson Ice Shelf, Antarctica
                        
                    
    
            Abstract Recent rapid thinning of West Antarctic ice shelves are believed to be caused by intrusions of warm deep water that induce basal melting and seaward meltwater export. This study uses data from three bottom-mounted mooring arrays to show seasonal variability and local forcing for the currents moving into and out of the Dotson ice shelf cavity. A southward flow of warm, salty water had maximum current velocities along the eastern channel slope, while northward outflows of freshened ice shelf meltwater spread at intermediate depth above the western slope. The inflow correlated with the local ocean surface stress curl. At the western slope, meltwater outflows followed the warm influx along the eastern slope with a ~2–3 month delay. Ocean circulation near Dotson Ice Shelf, affected by sea ice distribution and wind, appears to significantly control the inflow of warm water and subsequent ice shelf melting on seasonal time-scales. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1929991
- PAR ID:
- 10411904
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Widespread ice shelf thinning has been recorded in the Amundsen Sea in recent decades, driven by basal melting and intrusions of relatively warm Circumpolar Deep Water (CDW) onto the continental shelf. The Dotson Ice Shelf (DIS) is located to the south of the Amundsen Sea polynya, and has a high basal melting rate because modified CDW (mCDW) fills the Dotson‐Getz Trough (DGT) and reaches the base of the ice shelf. Here, hydrographic data in the DGT obtained during seven oceanographic surveys from 2007 to 2018 were used to study the interannual variation in mCDW volume and properties and their causes. Although mCDW volume showed relatively weak interannual variations at the continental shelf break, these variations intensified southward and reached a maximum in front of the DIS. There, the mCDW volume was ∼8,000 km3in 2007, rapidly decreased to 4,700 km3in 2014 before rebounding to 7,300 km3in 2018. We find that such interannual variability is coherent with local Ekman pumping integrated along the DGT modulated by the presence of sea ice, and complementing earlier theories involving shelf break winds only. The interannual variability in strength of the dominant south‐southeast coastal wind modulates the amplitude of Ekman upwelling along the eastern boundary of the Amundsen Sea polynya during the austral summers of the surveyed years, apparently leading to change in the volume of mCDW along the DGT. We note a strong correlation between the wind variability and the longitudinal location of the Amundsen Sea Low.more » « less
- 
            null (Ed.)Hydrographic data are analyzed for the broad continental shelf of the Bellingshausen Sea, which is host to a number of rapidly thinning ice shelves. The flow of warm Circumpolar Deep Water (CDW) onto the continental shelf is observed in the two major glacially carved troughs, the Belgica and Latady troughs. Using ship-based measurements of potential temperature, salinity, and dissolved oxygen, collected across several coast-to-coast transects over the Bellingshausen shelf in 2007, the velocity and circulation patterns are inferred based on geostrophic balance and further constrained by the tracer and mass budgets. Meltwater was observed at the surface and at intermediate depth toward the western side of the continental shelf, collocated with inferred outflows. The maximum conversion rate from the dense CDW to lighter water masses by mixing with glacial meltwater is estimated to be 0.37 ± 0.1 Sv in both depth and potential density spaces. This diapycnal overturning is comparable to previous estimates made in the neighboring Amundsen Sea, highlighting the overlooked importance of water mass modification and meltwater production associated with glacial melting in the Bellingshausen Sea.more » « less
- 
            Knowledge gaps about how the ocean melts Antarctica’s ice shelves, borne from a lack of observations, lead to large uncertainties in sea level predictions. Using high-resolution maps of the underside of Dotson Ice Shelf, West Antarctica, we reveal the imprint that ice shelf basal melting leaves on the ice. Convection and intermittent warm water intrusions form widespread terraced features through slow melting in quiescent areas, while shear-driven turbulence rapidly melts smooth, eroded topographies in outflow areas, as well as enigmatic teardrop-shaped indentations that result from boundary-layer flow rotation. Full-thickness ice fractures, with bases modified by basal melting and convective processes, are observed throughout the area. This new wealth of processes, all active under a single ice shelf, must be considered to accurately predict future Antarctic ice shelf melt.more » « less
- 
            Abstract Hydrographic data are analyzed for the broad continental shelf of the Bellingshausen Sea, which is host to a number of rapidly thinning ice shelves. The flow of warm Circumpolar Deep Water (CDW) onto the continental shelf is observed in the two major glacially carved troughs, the Belgica and Latady troughs. Using ship‐based measurements of potential temperature, salinity, and dissolved oxygen, collected across several coast‐to‐coast transects over the Bellingshausen shelf in 2007, the velocity and circulation patterns are inferred based on geostrophic balance and further constrained by the tracer and mass budgets. Meltwater was observed at the surface and at intermediate depth toward the western side of the continental shelf, collocated with inferred outflows. The maximum conversion rate from the dense CDW to lighter water masses by mixing with glacial meltwater is estimated to be 0.37 ± 0.1 Sv in both depth and potential density spaces. This diapycnal overturning is comparable to previous estimates made in the neighboring Amundsen Sea, highlighting the overlooked importance of water mass modification and meltwater production associated with glacial melting in the Bellingshausen Sea.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    