skip to main content


Title: Contribution and consequences of xylem‐transported CO 2 assimilation for C 3 plants
Summary

Traditionally, leaves were thought to be supplied withCO2for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem‐transportedCO2that is assimilated, vs simply lost to transpiration.

Cut leaves ofPopulus deltoidesandBrassica napuswere placed in eitherKCl or one of three [NaH13CO3] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem‐transportedCO2exiting the leaf across light andCO2response curves in real‐time using a tunable diode laser absorption spectroscope.

The rates of assimilation and efflux of xylem‐transportedCO2increased with increasing xylem [13CO2*] and transpiration. Under saturating irradiance, rates of assimilation using xylem‐transportedCO2accounted forc.2.5% of the total assimilation in both species in the highest [13CO2*].

The majority of xylem‐transportedCO2is assimilated, and efflux is small compared to respiration. Assimilation of xylem‐transportedCO2comprises a small portion of total photosynthesis, but may be more important whenCO2is limiting.

 
more » « less
Award ID(s):
1301346
NSF-PAR ID:
10443337
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
223
Issue:
3
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1230-1240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    High concentrations of dissolved inorganic carbon in stems of herbaceous and woody C3plants exit leaves in the dark. In the light, C3species use a small portion of xylem‐transported CO2for leaf photosynthesis. However, it is not known if xylem‐transported CO2will exit leaves in the dark or be used for photosynthesis in the light in Kranz‐type C4plants.

    Cut leaves ofAmaranthus hypochondriacuswere placed in one of three solutions of [NaH13CO3] dissolved in KCl water to measure the efflux of xylem‐transported CO2exiting the leaf in the dark or rates of assimilation of xylem‐transported CO2* in the light, in real‐time, using a tunable diode laser absorption spectroscope.

    In the dark, the efflux of xylem‐transported CO2increased with increasing rates of transpiration and [13CO2*]; however, rates of13CeffluxinA. hypochondriacuswere lower compared to C3species. In the light,A. hypochondriacusfixed nearly 75% of the xylem‐transported CO2supplied to the leaf.

    Kranz anatomy and biochemistry likely influence the efflux of xylem‐transported CO2out of cut leaves ofA. hypochondriacusin the dark, as well as the use of xylem‐transported CO2* for photosynthesis in the light. Thus increasing the carbon use efficiency of Kranz‐type C4species over C3species.

     
    more » « less
  2. Summary

    Autotrophic respiration is a major driver of the global C cycle and may contribute a positive climate warming feedback through increased atmospheric concentrations ofCO2. The extent of this feedback depends on plants' ability to acclimate respiration to maintain a constant carbon use efficiency (CUE).

    We quantified respiratory partitioning of gross primary production (GPP) andCUEof field‐grown trees in a long‐term warming experiment (+3°C). We delivered a13C–CO2pulse to whole tree crowns and chased that pulse in the respiration of leaves, whole crowns, roots, and soil. We also measured the isotopic composition of soil microbial biomass and the respiration rates of leaves and whole crowns.

    We documented homeostatic respiratory acclimation of foliar and whole‐crown respiration rates; the trees adjusted to experimental warming such that leaf‐level respiration rates were not increased. Experimental warming had no detectable impact on respiratory partitioning or mean residence times. Of the13C label acquired by the trees, aboveground respiration consumed 10%, belowground respiration consumed 40%, and the remaining 50% was retained.

    Experimental warming of +3°C did not alter respiratory partitioning at the scale of entire trees, suggesting that complete acclimation of respiration to warming is likely to dampen a positive climate warming feedback.

     
    more » « less
  3. Summary

    Steady‐state photosyntheticCO2responses (A/Cicurves) are used to assess environmental responses of photosynthetic traits and to predict future vegetative carbon uptake through modeling. The recent development of rapidA/Cicurves (RACiRs) permits faster assessment of these traits by continuously changing [CO2] around the leaf, and may reveal additional photosynthetic properties beyond what is practical or possible with steady‐state methods.

    Gas exchange necessarily incorporates photosynthesis and (photo)respiration. Each process was expected to respond on different timescales due to differences in metabolite compartmentation, biochemistry and diffusive pathways. We hypothesized that metabolic lags in photorespiration relative to photosynthesis/respiration andCO2diffusional limitations can be detected by varying the rate of change in [CO2] duringRACiR assays. We tested these hypotheses through modeling and experiments at ambient and 2% oxygen.

    Our data show that photorespiratory delays cause offsets in predictedCO2compensation points that are dependent on the rate of change in [CO2]. Diffusional limitations may reduce the rate of change in chloroplastic [CO2], causing a reduction in apparentRACiR slopes under highCO2ramp rates.

    MultirateRACiRs may prove useful in assessing diffusional limitations to gas exchange and photorespiratory rates.

     
    more » « less
  4. Abstract

    The springtime transition to regional‐scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze–thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborneCO2from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two globalCO2inversions using aCASAGFEDmodel prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic‐onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available AlaskanCO2observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models orCO2inversions, with better correlation to above‐freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over multiple years and at additional subarctic flux towers are critically needed.

     
    more » « less
  5. Summary

    Respiration in leaves and the continued elevation in the atmosphericCO2concentration causeCO2‐mediated reduction in stomatal pore apertures. Several mutants have been isolated for which stomatal responses to both abscisic acid (ABA) andCO2are simultaneously defective. However, there are only few mutations that impair the stomatal response to elevatedCO2, but not toABA. Such mutants are invaluable in unraveling the molecular mechanisms of earlyCO2signal transduction in guard cells. Recently, mutations in the mitogen‐activated protein (MAP) kinase,MPK12, have been shown to partially impairCO2‐induced stomatal closure. Here, we show thatmpk12plants, in whichMPK4is stably silenced specifically in guard cells (mpk12 mpk4GChomozygous double‐mutants), completely lackCO2‐induced stomatal responses and have impaired activation of guard cell S‐type anion channels in response to elevatedCO2/bicarbonate. However,ABA‐induced stomatal closure, S‐type anion channel activation andABA‐induced marker gene expression remain intact in thempk12 mpk4GCdouble‐mutants. These findings suggest thatMPK12 andMPK4 act very early inCO2signaling, upstream of, or parallel to the convergence ofCO2andABAsignal transduction. The activities ofMPK4 andMPK12 protein kinases were not directly modulated byCO2/bicarbonatein vitro, suggesting that they are not directCO2/bicarbonate sensors. Further data indicate thatMPK4 andMPK12 have distinguishable roles in Arabidopsis and that the previously suggested role ofRHC1 in stomatalCO2signaling is minor, whereasMPK4 andMPK12 act as key components of early stomatalCO2signal transduction.

     
    more » « less