skip to main content

Search for: All records

Award ID contains: 1301346

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The title three-dimensional metal–organic framework (MOF) compound, {(NH 4 ) 2 [Zn 2 (C 9 H 3 O 6 ) 2 ]·2C 5 H 9 NO} n , features an anionic framework constructed from Zn 2+ cations and benzene-1,3,5-tricarboxylate (BTC) organic anions. Charge balance is achieved by outer sphere ammonium cations formed by degradation of di- n -butylamine in the solvothermal synthesis of the compound. Binuclear {Zn 2 (COO) 2 } entities act as the framework's secondary building units. Each Zn II atom has a tetrahedral coordination environment with an O 4 set of donor atoms. The three-dimensional framework adopts a rutile-type topology and channels are filled in an alternating fashion with ordered and disordered 1-methylpyrrolidin-2-one solvent molecules and ammonium cations. The latter are held in the channels via four N—H...O hydrogen bonds, including three with the benzene-1,3,5-tricarboxylate ligands of the anionic framework and one with a 1-methylpyrrolidin-2-one solvent molecule.
  2. In the title compound, C 12 H 13 NO 2 , the five-membered ring has an envelope conformation; the disubstituted C atom lies out of the mean plane through the four other ring atoms (r.m.s. deviation = 0.0038 Å) by 0.1877 (18) Å. The plane of the phenyl substituent is practically perpendicular to that of the planar part of the five-membered ring, with a dihedral angle of 87.01 (5)°. In the crystal, molecules are linked by weak C—H...O hydrogen bonds, forming inversion dimers. The dimers are linked by further C—H...O hydrogen bonds, as well as carbonyl–carbonyl attractive interactions [O...C = 3.2879 (19) Å], forming a three-dimensional framework structure.
  3. In an attempt to grow 8-hydroxyquinoline–acetaminophen co-crystals from equimolar amounts of conformers in a chloroform–ethanol solvent mixture at room temperature, the title compound, C 9 H 7 NO, was obtained. The molecule is planar, with the hydroxy H atom forming an intramolecular O—H...N hydrogen bond. In the crystal, molecules form centrosymmetric dimers via two O—H...N hydrogen bonds. Thus, the hydroxy H atoms are involved in bifurcated O—H...N hydrogen bonds, leading to the formation of a central planar four-membered N 2 H 2 ring. The dimers are bound by intermolecular π–π stacking [the shortest C...C distance is 3.2997 (17) Å] and C—H...π interactions into a three-dimensional framework. The crystal grown represents a new monoclinic polymorph in the space group P 2 1 / n . The molecular structure of the present monoclinic polymorph is very similar to that of the orthorhombic polymorph (space group Fdd 2) studied previously [Roychowdhury et al. (1978). Acta Cryst. B 34 , 1047–1048; Banerjee & Saha (1986). Acta Cryst. C 42 , 1408–1411]. The structures of the two polymorphs are distinguished by the different geometries of the hydrogen-bonded dimers, which in the crystal of the orthorhombic polymorph possess twofold axis symmetry, with the central N 2 H 2more »ring adopting a butterfly conformation.« less
  4. Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical, electronic and optoelectronic properties of the materials, especially low-dimensional materials. Two-dimensional (2D) organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field; nevertheless, studies on this remain elusive. Here we report on how the surface depletion field affects the structural phase transition, quantum confinement and Stark effect in 2D (BA)2PbI4 perovskite microplates by the thickness-, temperature- and power-dependent photoluminescence (PL) spectroscopy. Power dependent PL studies suggest that high-temperature phase (HTP) and low-temperature phase (LTP) can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates. With the decrease of the microplate thickness, the structural phase transition temperature first gradually decreases and then increases below 25 nm, in striking contrast to the conventional size dependent structural phase transition. Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase, the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs. This explanation was further supported by the temperature dependent PLmore »studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes. Along with the thickness dependent phase transition, the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect.« less