skip to main content


Title: Graduate teaching assistants impact student motivation and engagement in course‐based undergraduate research experiences
Abstract

The drive to broaden equitable access to undergraduate research experiences has catalyzed the development and implementation of course‐based undergraduate research experiences (CUREs). Biology education has prioritized embedding CUREs in introductory labs, which are frequently taught by graduate teaching assistants (GTAs). Thus, a CURE GTA is expected not only to teach but also to support novice student researchers. We know little about how GTAs perform as research mentors in a CURE, or how the quality of their mentorship and support impacts undergraduate students. To address this gap in knowledge, we conducted a phenomenological study of an introductory biology CURE, interviewing 25 undergraduate students taught by nine different GTAs at a single institution. We used self‐determination theory to guide our exploration of how students' autonomous motivation to engage in a CURE is impacted by perceptions of GTA support. We found that highly motivated students were more likely to experience factors hypothesized to optimize motivation in the CURE, and to perceive that their GTA was highly supportive of these elements. Students with lower motivation were less likely to report engaging in fundamental elements of research offered in a CURE. Our findings suggest that GTAs directly impact students' motivation, which can, in turn, influence whether students perceive receiving the full research experience as intended in a CURE. We contend that practitioners who coordinate CUREs led by GTAs should therefore offer curated training that emphasizes supporting students' autonomous motivation in the course and engagement in the research. Our work suggests that GTAs may differ in their capacity to provide students with the support they need to receive and benefit from certain pedagogical practices. Future work assessing innovative approaches in undergraduate biology laboratory courses should continue to investigate potenital differential outcomes for students taught by GTAs.

 
more » « less
NSF-PAR ID:
10443397
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Research in Science Teaching
Volume:
60
Issue:
9
ISSN:
0022-4308
Format(s):
Medium: X Size: p. 1967-1997
Size(s):
["p. 1967-1997"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Undergraduate instructional biology laboratories are typically taught within two paradigms. Some labs focus on protocols and techniques delivered in “cookbook” format with defined experimental outcomes. There is increasing momentum to alternatively employ student-driven, open-ended, and discovery-based strategies, oftenviacourse-based undergraduate research experiences (CUREs) using crowd-sourcing initiatives. A fraction of students also participate in funded research in faculty research labs, where they have opportunities to work on projects designed to expand the frontiers of human knowledge. These experiences are widely recognized as valuable but are not scalable, as most institutions have many more undergraduates than research lab positions. We sought to address this gap through our department’s curriculum by creating an opportunity for students to participate in the real-world research process within a laboratory course. We conceived, developed, and delivered an authentic, guided research experience to students in an upper-level molecular biology laboratory course. We refer to this model as a “research program-linked CURE.” The research questions come directly from a faculty member’s research lab and evolve along with that research program. Students study post-transcriptional regulation in mycobacteria. We use current molecular biology methodologies to test hypotheses like “UTRs affect RNA and protein expression levels,” “there is functional redundancy among RNA helicases,” and “carbon starvation alters mRNA 5′ end chemistries.” We conducted standard assessments and developed a customized “Skills and Concepts Inventory” survey to gauge how well the course met our student learning outcomes. We report the results of our assessments and describe challenges addressed during development and execution of the course, including organizing activities to fit within an instructional lab, balancing breadth with depth, and maintaining authenticity while giving students the experience of obtaining interpretable and novel results. Our data suggest student learning was enhanced through this truly authentic research approach. Further, students were able to perceive they were participants and contributors within an active research paradigm. Students reported increases in their self-identification as scientists, and a positive impact on their career trajectories. An additional benefit was reciprocation back to the funded research laboratory, by funneling course alumni, results, materials, and protocols.

     
    more » « less
  2. null (Ed.)
    Synopsis  Early exposure to course-based undergraduate research experiences (CUREs) in introductory biology courses can promote positive student outcomes such as increased confidence, critical thinking, and views of applicability in lower-level courses, but it is unknown if these same impacts are achieved by upper-level courses. Upper-level courses differ from introductory courses in several ways, and one difference that could impact these positive student outcomes is the importance of balancing structure with independence in upper-level CUREs where students typically have more autonomy and greater complexity in their research projects. Here we compare and discuss two formats of upper-level biology CUREs (Guided and Autonomous) that vary along a continuum between structure and independence. We share our experiences teaching an upper-level CURE in two different formats and contrast those formats through student reported perceptions of confidence, professional applicability, and CURE format. Results indicate that the Guided Format (i.e., a more even balance between structure and independence) led to more positive impacts on student outcomes than the Autonomous Format (less structure and increased independence). We review the benefits and drawbacks of each approach while considering the unique elements of upper-level courses relative to lower-level courses. We conclude with a discussion of how implementing structured skill-building can assist instructors in adapting CUREs to their courses. 
    more » « less
  3. Rumain, Barbara T. (Ed.)
    Course-based undergraduate research experiences (CUREs) are laboratory courses that integrate broadly relevant problems, discovery, use of the scientific process, collaboration, and iteration to provide more students with research experiences than is possible in individually mentored faculty laboratories. Members of the national Malate dehydrogenase CUREs Community (MCC) investigated the differences in student impacts between traditional laboratory courses (control), a short module CURE within traditional laboratory courses (mCURE), and CUREs lasting the entire course (cCURE). The sample included approximately 1,500 students taught by 22 faculty at 19 institutions. We investigated course structures for elements of a CURE and student outcomes including student knowledge, student learning, student attitudes, interest in future research, overall experience, future GPA, and retention in STEM. We also disaggregated the data to investigate whether underrepresented minority (URM) outcomes were different from White and Asian students. We found that the less time students spent in the CURE the less the course was reported to contain experiences indicative of a CURE. The cCURE imparted the largest impacts for experimental design, career interests, and plans to conduct future research, while the remaining outcomes were similar between the three conditions. The mCURE student outcomes were similar to control courses for most outcomes measured in this study. However, for experimental design, the mCURE was not significantly different than either the control or cCURE. Comparing URM and White/Asian student outcomes indicated no difference for condition, except for interest in future research. Notably, the URM students in the mCURE condition had significantly higher interest in conducting research in the future than White/Asian students. 
    more » « less
  4. Laboratory experimentation is a key component of the development of professional engineers. However, experiments conducted in chemical engineering laboratory classes are commonly more prescriptive than the problems faced by practicing engineers, who have agency to make consequential decisions across the experiment and communication of results. Thus, understanding how experiments in laboratory courses vary in offering students opportunities to make such decisions, and how students navigate higher agency learning experiences is important for preparing graduates ready to direct these practices. In this study, we sought to answer the following research questions: How do students perceive their agency in course-based undergraduate research experiences? What factors are measured by the Consequential Agency in Laboratory Experiments survey? To better understand student perceptions of their agency in relation to laboratory experiments, we first conducted a case study of a course-based research experience (CURE) in a senior-level chemical engineering laboratory course. We then surveyed six upper-division laboratory courses across two universities using an initial version of the Consequential Agency in Laboratory Experiments survey. We used exploratory factor analysis to investigate the validity of the data from the survey for measuring relevant constructs of authenticity, agency in specific domains, responsibility, and opportunity to make decisions. We found that with instructional support, students in the CURE recognized that failure could itself provide opportunities for learning. They valued having the agency to make consequential decisions, even when they also found the experience challenging. We also found strong support for items measuring agency as responsibility, authenticity, agency in the communication domain, agency in the experimental design domain, and opportunity to make decisions. These findings give us insight into the value of higher agency laboratory experiments, and they provide a foundation for developing a more precise survey capable of measuring agency across various laboratory experiment practices. Such a survey will enable future studies that investigate the impacts of increasing agency in just one domain versus in several. In turn, this can aid faculty in developing higher agency learning experiences that are more feasible to implement, compared to CUREs. 
    more » « less
  5. null (Ed.)
    Here we evaluate undergraduate student attitudes about science after each of three authentic research experiences in a semester of an introductory biology laboratory course at Utah State University. The three course-based research experiences (CUREs) vary in length and student freedom, and they cover different areas of biology. Students responded to the science attitude items of the CURE Survey. When compared to national data, our students faired similarly, and all students struggled with certain epistemic assumptions about science knowledge. As also seen in the national database, change in science attitude was slight and nonlinear. Student self confidence in what a career scientist is and in scientific process skills was the best predictor of scientific maturity, not the three CUREs or other aspects of students’ background. We discuss the slight positive and negative change in attitude we did influence, and we note that most students would choose to have another research experience. 
    more » « less