skip to main content


Title: Metal‐Ligand Cooperativity to Assemble a Neutral and Terminal Niobium Phosphorus Triple Bond (Nb≡P)
Abstract

Decarbonylation along with P‐atom transfer from the phosphaethynolate anion, PCO, to the NbIVcomplex [(PNP)NbCl2(NtBuAr)] (1) (PNP=N[2‐PiPr2‐4‐methylphenyl]2; Ar=3,5‐Me2C6H3) results in its coupling with one of the phosphine arms of the pincer ligand to produce a phosphanylidene phosphorane complex [(PNPP)NbCl(NtBuAr)] (2). Reduction of2with CoCp*2cleaves the P−P bond to form the first neutral and terminal phosphido complex of a group 5 transition metal, namely, [(PNP)Nb≡P(NtBuAr)] (3). Theoretical studies have been used to understand both the coupling of the P‐atom and the reductive cleavage of the P−P bond. Reaction of3with a two‐electron oxidant such as ethylene sulfide results in a diamagnetic sulfido complex having a P−P coupled ligand, namely [(PNPP)Nb=S(NtBuAr)] (4).

 
more » « less
NSF-PAR ID:
10443436
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
134
Issue:
52
ISSN:
0044-8249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Decarbonylation along with P‐atom transfer from the phosphaethynolate anion, PCO, to the NbIVcomplex [(PNP)NbCl2(NtBuAr)] (1) (PNP=N[2‐PiPr2‐4‐methylphenyl]2; Ar=3,5‐Me2C6H3) results in its coupling with one of the phosphine arms of the pincer ligand to produce a phosphanylidene phosphorane complex [(PNPP)NbCl(NtBuAr)] (2). Reduction of2with CoCp*2cleaves the P−P bond to form the first neutral and terminal phosphido complex of a group 5 transition metal, namely, [(PNP)Nb≡P(NtBuAr)] (3). Theoretical studies have been used to understand both the coupling of the P‐atom and the reductive cleavage of the P−P bond. Reaction of3with a two‐electron oxidant such as ethylene sulfide results in a diamagnetic sulfido complex having a P−P coupled ligand, namely [(PNPP)Nb=S(NtBuAr)] (4).

     
    more » « less
  2. Abstract

    A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡CtBu) (2) (Menacnac=[ArNC(CH3)]2CH, Ar=2,6‐iPr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡CtBu(OTf) (1) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡CtBu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡CtBu(OEt2) (3) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡CtBu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2and4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2and4. This study represents the first example of a metathesis reaction between the P‐atom of [PCO]and an alkylidyne ligand.

     
    more » « less
  3. Abstract

    A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡CtBu) (2) (Menacnac=[ArNC(CH3)]2CH, Ar=2,6‐iPr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡CtBu(OTf) (1) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡CtBu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡CtBu(OEt2) (3) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡CtBu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2and4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2and4. This study represents the first example of a metathesis reaction between the P‐atom of [PCO]and an alkylidyne ligand.

     
    more » « less
  4. Abstract

    3,3′,5,5′‐Tetra‐tert‐butyl‐2′‐sulfanyl[1,1′‐biphenyl]‐2‐ol (H2[tBu4OS]) was prepared in 24 % yield overall from the analogous biphenol using standard techniques. Addition of H2[tBu4OS] to Mo(NAr)(CHCMe2Ph)(2,5‐dimethylpyrrolide)2led to formation of Mo(NAr)(CHCMe2Ph)[tBu4OS], which was trapped with PMe3to give Mo(NAr)(CHCMe2Ph)[tBu4OS](PMe3) (1(PMe3)). An X‐ray crystallographic study of1(PMe3) revealed that two structurally distinct square pyramidal molecules are present in which the alkylidene ligand occupies the apical position in each. Both1(PMe3)Aand1(PMe3)Bare disordered. Mo(NAd)(CHCMe2Ph)(tBu4OS)(PMe3) (2(PMe3); Ad=1‐adamantyl) and W(NAr)(CHCMe2Ph)(tBu4OS)(PMe3) (3(PMe3)) were prepared using analogous approaches.1(PMe3) reacts with ethylene (1 atm) in benzene within 45 minutes to give an ethylene complex Mo(NAr)(tBu4OS)(C2H4) (4) that is isolable and relatively stable toward loss of ethylene below 60 °C. An X‐ray study shows that the bond distances and angles for the ethylene ligand in4are like those found for bisalkoxide ethylene complexes of the same general type. Complex1(PMe3) in the presence of one equivalent of B(C6F5)3catalyzes the homocoupling of 1‐decene, allyltrimethylsilane, and allylboronic acid pinacol ester at ambient temperature.1(PMe3),2(PMe3), and3(PMe3) all catalyze the ROMP ofracendo,exo‐5,6‐dicarbomethoxynorbornene (rac‐DCMNBE) in the presence of B(C6F5)3, but the polyDCMNBE that is formed has a random structure.

     
    more » « less
  5. Abstract

    We report here a “nonspectator” behavior for an unsupportedL‐function σ3‐P ligand (i.e. P{N[o‐NMe‐C6H4]2},1a) in complex with the cyclopentadienyliron dicarbonyl cation (Fp+). Treatment of1a⋅Fp+with [(Me2N)3S][Me3SiF2] results in fluoride addition to theP‐center, giving the isolable crystalline fluorometallophosphorane1aF⋅Fp that allows a crystallographic assessment of the variance in the Fe−P bond as a function of P‐coordination number. The nonspectator reactivity of1a⋅Fp+is rationalized on the basis of electronic structure arguments and by comparison to trigonal analogue (Me2N)3P⋅Fp+(i.e.1b⋅Fp+), which is inert to fluoride addition. These observations establish a nonspectator L/X‐switching in (σ3‐P)–M complexes by reversible access to higher‐coordinate phosphorus ligand fragments.

     
    more » « less