Every night during spring and autumn, the mass movement of migratory birds redistributes bird abundances found on the ground during the day. However, the connection between the magnitude of nocturnal migration and the resulting change in diurnal abundance remains poorly quantified. If departures and landings at the same location are balanced throughout the night, we expect high bird turnover but little change in diurnal abundance (stream‐like migration). Alternatively, migrants may move simultaneously in spatial pulses, with well‐separated areas of departure and landing that cause significant changes in the abundance of birds on the ground during the day (wave‐like migration). Here, we apply a flow model to data from weather surveillance radars (WSR) to quantify the daily fluxes of nocturnally migrating birds landing and departing from the ground, characterizing the movement and stopover of birds in a comprehensive synoptic scale framework. We corroborate our results with independent observations of the diurnal abundances of birds on the ground from eBird. Furthermore, we estimate the abundance turnover, defined as the proportion of birds replaced overnight. We find that seasonal bird migration chiefly resembles a stream where bird populations on the ground are continuously replaced by new individuals. Large areas show similar magnitudes of take‐off and landing, coupled with relatively small distances flown by birds each night, resulting in little change in bird densities on the ground. We further show that WSR‐inferred landing and take‐off fluxes predict changes in eBird‐derived abundance turnover rate and turnover in species composition. We find that the daily turnover rate of birds is 13% on average but can reach up to 50% on peak migration nights. Our results highlight that WSR networks can provide real‐time information on rapidly changing bird distributions on the ground. The flow model applied to WSR data can be a valuable tool for real‐time conservation and public engagement focused on migratory birds' daytime stopovers.
more »
« less
Continental‐scale biomass redistribution by migratory birds in response to seasonal variation in productivity
Abstract AimAnimal migration is often explained as the result of resource tracking in seasonally dynamic environments. Therefore, resource availability should influence both the distributions of migratory animals and their seasonal abundance. We examined the relationship between primary productivity and the spatio‐temporal distributions of migratory birds to assess the role of energy availability in avian migration. LocationNorth America. Time periodFull annual cycle, 2011–2016. Major taxa studiedNocturnally migrating landbirds. MethodsWe used observations of nocturnally migrating landbirds from the eBird community‐science programme to estimate weekly spatial distributions of total biomass, abundance and species richness. We related these patterns to primary productivity and seasonal productivity surplus estimated using a remotely sensed measure of vegetation greenness. ResultsAll three avian metrics showed positive spatial associations with primary productivity, and this was more pronounced with seasonal productivity surplus. Surprisingly, biomass showed a weaker association than did abundance and richness, despite being a better indicator of energetic requirements. The strength of associations varied across seasons, being the weakest during migration. During spring migration, avian biomass increased ahead of vegetation green‐up in temperate regions, a pattern also previously described for herbivorous waterfowl. In the south‐eastern USA, spring green‐up was instead associated with a net decrease in biomass, and winter biomass greatly exceeded that of summer, highlighting the region as a winter refuge for short‐distance migrants. Main conclusionsAlthough instantaneous energy availability is important in shaping the distribution of migratory birds, the stronger association of productivity with abundance and richness than with biomass suggests the role of additional drivers unrelated to energetic requirements that are nonetheless correlated with productivity. Given recent reports of widespread North American avifaunal declines, including many common species that winter in the south‐eastern USA, understanding how anthropogenic activities are impacting winter bird populations in the region should be a research priority.
more »
« less
- PAR ID:
- 10443437
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 31
- Issue:
- 4
- ISSN:
- 1466-822X
- Page Range / eLocation ID:
- p. 727-739
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Migration is one of the most energy-demanding behaviors observed in birds. Mitochondria are the primary source of energy used to support these long-distance movements, yet how mitochondria meet the energetic demands of migration is scarcely studied. We quantified changes in mitochondrial respiratory performance in the White-crowned Sparrow (Zonotrichia leucophrys), which has a migratory and non-migratory subspecies. We hypothesized that the long-distance migratory Gambel’s subspecies (Z. l. gambelii) would show higher mitochondrial respiratory performance compared to the non-migratory Nuttall’s subspecies (Z. l. nuttalli). We sampled Gambel’s individuals during spring pre-migration, active fall migration, and a period with no migration or breeding (winter). We sampled Nuttall’s individuals during periods coinciding with fall migration and the winter period of Gambel’s annual cycle. Overall, Gambel’s individuals had higher citrate synthase, a proxy for mitochondrial volume, than Nuttall’s individuals. This was most pronounced prior to and during migration. We found that both OXPHOS capacity (state 3) and basal respiration (state 4) of mitochondria exhibit high seasonal flexibility within Gambel’s individuals, with values highest during active migration. These values in Nuttall’s individuals were most similar to Gambel’s individuals in winter. Our observations indicate that seasonal changes in mitochondrial respiration play a vital role in migration energetics.more » « less
-
Abstract AimTwo important environmental hazards for nocturnally migrating birds are artificial light at night (ALAN) and air pollution, with ambient fine particulate matter (PM2.5) considered to be especially harmful. Nocturnally migrating birds are attracted to ALAN during seasonal migration, which could increase exposure to PM2.5. Here, we examine PM2.5concentrations and PM2.5trends and the spatial correlation between ALAN and PM2.5within the geographical ranges of the world’s nocturnally migrating birds. LocationGlobal. Time period1998–2018. Major taxa studiedNocturnally migrating birds. MethodsWe intersected a global database of annual mean PM2.5concentrations over a 21‐year period (1998–2018) with the geographical ranges (breeding, non‐breeding and regions of passage) of 225 nocturnally migrating bird species in three migration flyways (Americas,n = 143; Africa–Europe,n = 36; and East Asia–Australia,n = 46). For each species, we estimated PM2.5concentrations and trends and measured the correlation between ALAN and PM2.5, which we summarized by season and flyway. ResultsCorrelations between ALAN and PM2.5were significantly positive across all seasons and flyways. The East Asia–Australia flyway had the strongest ALAN–PM2.5correlations within regions of passage, the highest PM2.5concentrations across all three seasons and the strongest positive PM2.5trends on the non‐breeding grounds and within regions of passage. The Americas flyway had the strongest negative air pollution trends on the non‐breeding grounds and within regions of passage. The breeding grounds had similarly negative air pollution trends within the three flyways. Main conclusionsThe combined threats of ALAN and air pollution are greatest and likely to be increasing within the East Asia–Australia flyway and lowest and likely to be decreasing within the Americas and Africa–Europe flyways. Reversing PM2.5trends in the East Asia–Australia flyway and maintaining negative PM2.5trends in the Americas and Africa–Europe flyways while reducing ALAN levels would likely be beneficial for the nocturnally migrating bird populations in each region.more » « less
-
Abstract AimArtificial light at night (ALAN) and roads are known threats to nocturnally migrating birds. How associations with ALAN and roads are defined in combination for these species at the population level across the full annual cycle has not been explored. LocationWestern Hemisphere. MethodsWe estimated range‐wide exposure, predictor importance and the prevalence of positive associations with ALAN and roads at a weekly temporal resolution for 166 nocturnally migrating bird species in three orders: Passeriformes (n = 104), Anseriformes (n = 27) and Charadriiformes (n = 35). We clustered Passeriformes based on the prevalence of positive associations. ResultsPositive associations with ALAN and roads were more prevalent for Passeriformes during migration when exposure and importance were highest. Positive associations with ALAN and roads were more prevalent for Anseriformes and Charadriiformes during the breeding season when exposure was lowest. Importance was uniform for Anseriformes and highest during migration for Charadriiformes. Our cluster analysis identified three groups of Passeriformes, each having similar associations with ALAN and roads. The first occurred in eastern North America during migration where exposure, prevalence, and importance were highest. The second wintered in Mexico and Central America where exposure, prevalence and importance were highest. The third occurred throughout North America where prevalence was low, and exposure and importance were uniform. The first and second were comprised of dense habitat specialists and long‐distance migrants. The third was comprised of open habitat specialists and short distance migrants. Main conclusionsOur findings suggest ALAN and roads pose the greatest risk during migration for Passeriformes and during the breeding season for Anseriformes and Charadriiformes. Our results emphasise the close relationship between ALAN and roads, the diversity of associations dictated by taxonomy, exposure, migration strategy and habitat and the need for more informed and comprehensive mitigation strategies where ALAN and roads are treated as interconnected threats.more » « less
-
Previous studies in urban desert ecosystems have reported a decline in avian diversity. Herein, we expand and improve these studies by disentangling the effect of land-use and land-cover (LULC) types (desert, riparian desert, urban, riparian urban, agriculture), vegetation greenness (normalized difference vegetation index—NDVI), climate, and their interactions on avian seasonal variation abundance and richness. Avian community data were collected seasonally (winter and spring) from 2001 to 2016. We used generalized linear mixed models (GLMM) and multimodel inference to investigate how environmental predictors explain patterns of avian richness and abundance. Avian abundance and richness oscillated considerably among the years. GLMM indicated that LULC was the most important predictor of avian abundance and richness. Avian abundance was highest in urban riparian and urban LULC types, followed by agriculture. In contrast, avian richness was the highest in riparian environments (urban and desert), followed by agriculture, urban, and desert. NDVI was also strongly related to avian abundance and richness, whereas the effect of temperature and precipitation was moderate. The importance of environmental predictors is, however, dependent on LULC. The importance of LULC, vegetation cover, and climate in influencing the seasonal patterns of avian distribution highlights birds’ sensitivity to changes in land use and cover and temperature.more » « less
An official website of the United States government
