skip to main content


Title: Photodynamic Stromal Depletion Enhances Therapeutic Nanoparticle Delivery in 3D Pancreatic Ductal Adenocarcinoma Tumor Models
ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human malignancies. PDAC is characterized by dense fibrous stroma which obstructs drug delivery and plays complex tumor‐promoting roles. Photodynamic therapy (PDT) is a light‐based modality which has been demonstrated to be clinically feasible and effective for tumors of the pancreas. Here, we usein vitroheterocellular 3D co‐culture models in conjunction with imaging, bulk rheology and microrheology to investigate photodegradation of non‐cellular components of PDAC stroma (photodynamic stromal depletion, PSD). By measuring the rheology of extracellular matrix (ECM) before and after PDT we find that softening of ECM is concomitant with increased transport of nanoparticles (NPs). At the same time, as shown by us previously, photodestruction of stromal fibroblasts leads to enhanced tumor response to PDT. Here we specifically evaluate the capability of PSD to enhance RNA nanomedicine delivery, using a NP carrying an inhibitor of miR‐21‐5P, a PDAC oncomiR. We confirm improved delivery of this therapeutic NP after PSD by observation of increased expression of PDCD4, a protein target of miR‐21‐5P. Collectively, these results in 3D tumor models suggest that PSD could be developed to enhance delivery of other cancer therapeutics and improve tumor response to treatment.

 
more » « less
NSF-PAR ID:
10443439
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
99
Issue:
1
ISSN:
0031-8655
Page Range / eLocation ID:
p. 120-131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Purpose: Paracrine activation of pro-fibrotic hedgehog (HH) signaling in pancreatic ductal adenocarcinoma (PDAC) results in stromal amplification that compromises tumor drug delivery, efficacy, and patient survival. Interdiction of HH-mediated tumor-stroma crosstalk with smoothened (SMO) inhibitors (SHHi) ‘primes’ PDAC patient-derived xenograft (PDX) tumors for increased drug delivery by transiently increasing vascular patency/permeability, and thereby macromolecule delivery. However, patient tumor isolates vary in their responsiveness, and responders show co-induction of epithelial-mesenchymal transition (EMT). We aimed to identify the signal derangements responsible for EMT induction and reverse them, and devise approaches to stratify SHHi-responsive tumors non-invasively based on clinically-quantifiable parameters. Experimental design: Animals underwent diffusion-weighted magnetic resonance (DW-MR) imaging for measurement of intra-tumor diffusivity. In parallel, tissue-level deposition of nanoparticle probes was quantified as a marker of vascular permeability/perfusion. Transcriptomic and bioinformatic analysis was employed to investigate SHHi-induced gene reprogramming and identify key ‘nodes’ responsible for EMT induction. Results: multiple patient tumor isolates responded to short-term SHH inhibitor exposure with increased vascular patency and permeability, with proportionate increases in tumor diffusivity. Non-responding PDXs did not. SHHi-treated tumors showed elevated FGF drive and distinctly higher nuclear localization of fibroblast growth factor receptor (FGFR1) in EMT-polarized tumor cells. Pan-FGFR inhibitor NVP-BGJ398 (Infigratinib) reversed the SHHi-induced EMT marker expression and nuclear FGFR1 accumulation without compromising the enhanced permeability effect. Conclusion: This dual-hit strategy of SMO and FGFR inhibition provides a clinically-translatable approach to compromise the profound impermeability of PDAC tumors. Furthermore, clinical deployment of DW-MR imaging could fulfill the essential clinical-translational requirement for patient stratification.

     
    more » « less
  2. Abstract

    Drug discovery and efficacy in cancer treatments are limited by the inability of pre‐clinical models to predict successful outcomes in humans. Limitations remain partly due to their lack of a physiologic tumor microenvironment (TME), which plays a considerable role in drug delivery and tumor response to therapy. Chemotherapeutics and immunotherapies rely on transport through the vasculature, via the smallest capillaries and stroma to the tumor, where passive and active transport processes are at play. Here, a 3D vascularized tumor on‐chip is used to examine drug delivery in a relevant TME within a large bed of perfusable vasculature. This system demonstrates highly localized pathophysiological effects of two tumor spheroids (Skov3 and A549), which cause significant changes in vessel density and barrier function. Paclitaxel (Taxol) uptake is examined through diffusivity measurements, functional efflux assays, and accumulation of the fluorescent‐conjugated drug within the TME. Due to vascular and stromal contributions, differences in the response of vascularized tumors to Taxol (shrinkage and CD44 expression) are apparent compared with simpler models. This model specifically allows for examination of spatially resolved tumor‐associated endothelial dysfunction, likely improving the representation of in vivo drug distribution, and has potential for development into a more predictable model of drug delivery.

     
    more » « less
  3. Introduction

    Immunotherapies have shown great promise, but are not effective for all tumors types and are effective in less than 3% of patients with pancreatic ductal adenocarcinomas (PDAC). To make an immune treatment that is effective for more cancer patients and those with PDAC specifically, we genetically engineered Salmonella to deliver exogenous antigens directly into the cytoplasm of tumor cells. We hypothesized that intracellular delivery of an exogenous immunization antigen would activate antigen-specific CD8 T cells and reduce tumors in immunized mice.

    Methods

    To test this hypothesis, we administered intracellular delivering (ID) Salmonella that deliver ovalbumin as a model antigen into tumor-bearing, ovalbumin-vaccinated mice. ID Salmonella delivers antigens by autonomously lysing in cells after the induction of cell invasion.

    Results

    We showed that the delivered ovalbumin disperses throughout the cytoplasm of cells in culture and in tumors. This delivery into the cytoplasm is essential for antigen cross-presentation. We showed that co-culture of ovalbumin-recipient cancer cells with ovalbumin-specific CD8 T cells triggered a cytotoxic T cell response. After the adoptive transfer of OT-I CD8 T cells, intracellular delivery of ovalbumin reduced tumor growth and eliminated tumors. This effect was dependent on the presence of the ovalbumin-specific T cells. Following vaccination with the exogenous antigen in mice, intracellular delivery of the antigen cleared 43% of established KPC pancreatic tumors, increased survival, and prevented tumor re-implantation.

    Discussion

    This response in the immunosuppressive KPC model demonstrates the potential to treat tumors that do not respond to checkpoint inhibitors, and the response to re-challenge indicates that new immunity was established against intrinsic tumor antigens. In the clinic, ID Salmonella could be used to deliver a protein antigen from a childhood immunization to refocus pre-existing T cell immunity against tumors. As an off-the-shelf immunotherapy, this bacterial system has the potential to be effective in a broad range of cancer patients.

     
    more » « less
  4. Mesenchymal stem cells (MSCs) that accumulate in the primary tumor due to their natural tropism for inflammatory tissues enhance the metastatic potential of tumor cells through direct interactions with tumor cells or paracrine signaling within the tumor microenvironment. MSCs also undergo senescence, which leads to increased production of pro-inflammatory cytokines and matrix-degrading enzymes. Senescence is a critical mechanism of limiting abnormal growth and cancer development through tumor suppression; however, senescent cells that accumulate in tissues eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Increased understanding of the biophysical properties of senescent MSCs and how they mediate cell-cell interactions in the tumor may be useful in identifying novel biomarkers for senescent stromal cells in tissues or aggressive cancer cells that form in an aging stroma. A high-content single cell biophysical approach was used to define the mechanical properties of pre- and post- senescent MSCs. Our data shows post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than their pre-senescent counterparts. A robust molecular screening approach combining genome-wide microarray analysis with mass spec-based proteomics was used to establish the molecular differences in pre- and post- senescent MSCs. Our data show a consistent correlation of up and down regulated gene and peptide expression. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on breast cancer cell motility and invasion in 3D collagen gels. Post-senescent MSCs induced an invasive breast cancer cell phenotype, characterized by increased spreading of breast cancer cells in collagen, increased numbers of invading cells, and morphological elongation of breast cancer cells. Surprisingly, this invasive breast cancer cell behavior was further amplified when breast cancer cells were co-cultured with both pre- and post- senescent cells. 
    more » « less
  5. Abstract Background

    Many studies have investigated microRNAs (miRNAs) in the detection of type 2 diabetes mellitus (T2DM). Herein, the dysregulated direction of stress‐related miRNAs used as biomarkers of T2DM are summarized and analyzed.

    Methods

    PubMed, EMBASE, ISI Web of Science, and three Chinese databases were searched for case–control miRNA profiling studies about T2DM. A meta‐analysis under a random effect was performed. Subgroup analysis was conducted based on different tissues and species. Sensitivity analysis was conducted to confirm the robustness among studies. The effect size was pooled using ln odds ratios (ORs), 95% confidence intervals (95% CIs), andP‐values.

    Results

    The present meta‐analysis included 39 case–control studies with a total of 494 miRNAs. Only 33 miRNAs were reported in three or more studies and, of these, 18 were inconsistent in their direction of dysregulation. Two significantly dysregulated miRNAs (let‐7 g and miR‐155) were identified in the meta‐analysis. Four miRNAs (miR‐142‐3p, miR‐155, miR‐21, and miR‐34c‐5p) were dysregulated in patients with T2DM, whereas five miRNAs (miR‐146a, miR‐199a‐3p, miR‐200b, miR‐29b and miR‐30e) were dysregulated in animal models of diabetes. In addition, two dysregulated miRNAs (miR‐146a and miR‐21) were highly cornea specific and heart specific. In sensitivity analysis, only miR‐155 was still significantly dysregulated after removing studies with small sample sizes.

    Conclusions

    The present meta‐analysis revealed that 16 stress‐related miRNAs were significantly dysregulated in T2DM. MiR‐148b, miR‐223, miR‐130a, miR‐19a, miR‐26b and miR‐27b were selected as potential circulating biomarkers of T2DM. In addition, miR‐146a and miR‐21 were identified as potential tissue biomarkers of T2DM.

     
    more » « less