skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Propulsion efficiency of achiral microswimmers in viscoelastic polymer fluids
Abstract We report the effects of polymer size, concentration, and polymer fluid viscoelasticity on the propulsion kinematics of achiral microswimmers. Magnetically driven swimmer's step‐out frequency, orientation angle, and propulsion efficiency are shown to be dependent on fluid microstructure, viscosity, and viscoelasticity. Additionally, by exploring the swimming dynamics of two geometrically distinct achiral structures, we observe differences in propulsion efficiencies of swimmers. Results indicate that larger four‐bead swimmers are more efficiently propelled in fluids with significant elasticity in contrast to smaller 3‐bead swimmers, which are able to use shear thinning behavior for efficient propulsion. Insights gained from these investigations will assist the development of future microswimmer designs and control strategies targeting applications in complex fluids.  more » « less
Award ID(s):
2000202 2000330
PAR ID:
10443446
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
69
Issue:
4
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Here, we use magnetically driven self-assembled achiral swimmers made of two to four superparamagnetic micro-particles to provide insight into how swimming kinematics develop in complex, shear-thinning fluids. Two model shear-thinning polymer fluids are explored, where measurements of swimming dynamics reveal contrasting propulsion kinematics in shear-thinning fluids vs a Newtonian fluid. When comparing the velocity of achiral swimmers in polymer fluids to their dynamics in water, we observe kinematics dependent on (1) no shear-thinning, (2) shear-thinning with negligible elasticity, and (3) shear-thinning with elasticity. At the step-out frequency, the fluidic environment's viscoelastic properties allow swimmers to propel faster than their Newtonian swimming speed, although their swimming gait remains similar. Micro-particle image velocimetry is also implemented to provide insight into how shear-thinning viscosity fluids with elasticity can modify the flow fields of the self-assembled magnetic swimmers. Our findings reveal that flow asymmetry can be created for symmetric swimmers through either the confinement effect or the Weissenberg effect. For pseudo-chiral swimmers in shear-thinning fluids, only three bead swimmers show swimming enhancement, while four bead swimmers always have a decreased step-out frequency velocity compared to their dynamics in water. 
    more » « less
  2. null (Ed.)
    Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction of their flexible appendages with the surrounding fluid. While their locomotion has been extensively studied with a Newtonian fluid assumption, in realistic biological environments these micro-swimmers invariably encounter rheologically complex fluids. In particular, many biological fluids such as blood and different types of mucus have shear-thinning viscosities. The influence of this ubiquitous non-Newtonian rheology on the performance of flexible swimmers remains largely unknown. Here, we present a first study to examine how shear-thinning rheology alters the fluid-structure interaction and hence the propulsion performance of elastic swimmers at low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate interplay between elastic and viscous forces as well as the magnetic actuation. We also use a reduced-order model to elucidate the mechanisms underlying the enhanced and hindered propulsion observed in different physical regimes. These results and improved understanding could guide the design of flexible micro-swimmers in non-Newtonian fluids. 
    more » « less
  3. Motile bacteria play essential roles in biology that rely on their dynamic behaviours, including their ability to navigate, interact and self-organize. However, bacteria dynamics on fluid interfaces are not well understood. Swimmers adsorbed on fluid interfaces remain highly motile, and fluid interfaces are highly non-ideal domains that alter swimming behaviour. To understand these effects, we study flow fields generated byPseudomonas aeruginosaPA01 in the pusher mode. Analysis of correlated displacements of tracers and bacteria reveals dipolar flow fields with unexpected asymmetries that differ significantly from their counterparts in bulk fluids. We decompose the flow field into fundamental hydrodynamic modes for swimmers in incompressible fluid interfaces. We find an expected force-doublet mode corresponding to propulsion and drag at the interface plane, and a second dipolar mode, associated with forces exerted by the flagellum on the cell body in the aqueous phase that are countered by Marangoni stresses in the interface. The balance of these modes depends on the bacteria's trapped interfacial configurations. Understanding these flows is broadly important in nature and in the design of biomimetic swimmers. 
    more » « less
  4. Biological and artificial microswimmers often encounter fluid media with non-Newtonian rheological properties. In particular, many biological fluids such as blood and mucus are shear-thinning. Recent studies have demonstrated how shear-thinning rheology can impact substantially the propulsion performance in different manners. In this work, we examine the effect of geometrical shape upon locomotion in a shear-thinning fluid using a prolate spheroidal squirmer model. We use a combination of asymptotic analysis and numerical simulations to quantify how particle geometry impacts the speed and the energetic cost of swimming. The results demonstrate the advantages of spheroidal over spherical swimmers in terms of both swimming speed and energetic efficiency when squirming through a shear-thinning fluid. More generally, the findings suggest the possibility of tuning the swimmer geometry to better exploit non-Newtonian rheological behaviours for more effective locomotion in complex fluids. 
    more » « less
  5. Abstract Optimal fish array hydrodynamics in accelerating phalanx schools are investigated through a computational framework which combines high fidelity Computational Fluid Dynamics (CFD) simulations with a gradient free surrogate-based optimization algorithm. Critical parameters relevant to a phalanx fish school, such as midline kinematics, separation distance and phase synchronization, are investigated in light of efficient propulsion during an accelerating fish motion. Results show that the optimal midline kinematics in accelerating phalanx schools resemble those of accelerating solitary swimmers. The optimal separation distance in a phalanx school for thunniform biologically-inspired swimmers is shown to be around 2L(whereLis the swimmer’s total length). Furthermore, separation distance is shown to have a stronger effect,ceteris paribus, on the propulsion efficiency of a school when compared to phase synchronization. 
    more » « less