skip to main content


Title: Strength and Memory of Precipitation's Control Over Streamflow Across the Conterminous United States
Abstract

How precipitation (P) is translated into streamflow (Q) and over what timescales (i.e., “memory”) is difficult to predict without calibration of site‐specific models or using geochemical approaches, posing barriers to prediction in ungauged basins or advancement of general theories. Here, we used a data‐driven approach to identify regional patterns and exogenous controls on P–Q interactions. We applied an information flow analysis, which quantifies uncertainty reduction, to a daily time series of P and Q from 671 watersheds across the conterminous United States. We first demonstrated that information transfer from P to Q primarily reflects the quickflow component of water‐budgets, based on a watershed model. Readily quantifiable information flows show a functional relationship with model parameters, suggesting utility for model calibration. Second, applied to real watersheds, P–Q information flows exhibit seasonally varying behavior within regions in a manner consistent with dominant runoff generation mechanisms. However, the timing and the magnitude of information flows also reflect considerable subregional heterogeneity, likely attributable to differences in watershed size, baseflow contributions, and variation in aerial coverage of preferential flow paths. A regression analysis showed that a combination of climate and watershed characteristics are predictive of P–Q information flows. Though information flows cannot, in most cases, uniquely determine dominant runoff mechanisms, they provide a means to quantify the heterogeneous outcomes of those mechanisms within regions, thereby serving as a benchmarking tool for models developed at the regional scale. Last, information flows characterize regionally specific ways in which catchment connectivity changes from the wet to dry season.

 
more » « less
Award ID(s):
1928406
PAR ID:
10443447
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
3
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Precipitation occurs in two basic forms defined as liquid state and solid state. Different from rain-fed watershed, modeling snow processes is of vital importance in snow-dominated watersheds. The seasonal snowpack is a natural water reservoir, which stores snow water in winter and releases it in spring and summer. The warmer climate in recent decades has led to earlier snowmelt, a decline in snowpack, and change in the seasonality of river flows. The Soil and Water Assessment Tool (SWAT) could be applied in the snow-influenced watershed because of its ability to simultaneously predict the streamflow generated from rainfall and from the melting of snow. The choice of parameters, reference data, and calibration strategy could significantly affect the SWAT model calibration outcome and further affect the prediction accuracy. In this study, SWAT models are implemented in four upland watersheds in the Tulare Lake Basin (TLB) located across the Southern Sierra Nevada Mountains. Three calibration scenarios considering different calibration parameters and reference datasets are applied to investigate the impact of the Parallel Energy Balance Model (ParBal) snow reconstruction data and snow parameters on the streamflow and snow water-equivalent (SWE) prediction accuracy. In addition, the watershed parameters and lapse rate parameters-led equifinality is also evaluated. The results indicate that calibration of the SWAT model with respect to both streamflow and SWE reference data could improve the model SWE prediction reliability in general. Comparatively, the streamflow predictions are not significantly affected by differently lumped calibration schemes. The default snow parameter values capture the extreme high flows better than the other two calibration scenarios, whereas there is no remarkable difference among the three calibration schemes for capturing the extreme low flows. The watershed and lapse rate parameters-induced equifinality affects the flow prediction more (Nash-Sutcliffe Efficiency (NSE) varies between 0.2–0.3) than the SWE prediction (NSE varies less than 0.1). This study points out the remote-sensing-based SWE reconstruction product as a promising alternative choice for model calibration in ungauged snow-influenced watersheds. The streamflow-reconstructed SWE bi-objective calibrated model could improve the prediction reliability of surface water supply change for the downstream agricultural region under the changing climate. 
    more » « less
  2. Flow–ecology relationships are critical for developing and adaptively managing environmental flows. However, uncertainty often arises from data limitations and an incomplete understanding of the spatial and temporal attributes inherent to each relationship. Accounting for sources of uncertainty is critical given the mounting interest in implementing environmental flows at large scales, often with limited information. We used the South Fork Eel River watershed in northern California as a case study to demonstrate how data gaps and uncertainty in flow–ecology relationships may be better quantified. A rigorous literature review revealed that few flow–ecology relationships related directly to the flow regime, and none spanned the full range of hydrologic or geomorphic variability exhibited across the watershed. Identified data gaps informed several sensitivity analyses within a Bayesian network model which showed that the modeled ecological outcome differed by as much as 50% depending on the type and magnitude of uncertainty. This study presents a general regional framework for quantifying spatial and temporal data gaps that can be applied to other watersheds and information types to improve representation of uncertainty in flow–ecology relationships and to inform environmental flow design. 
    more » « less
  3. Abstract

    Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt as well as groundwater connectivity. In mountainous regions with limestone and dolomite geology, bedrock formations can host karst aquifers, which play a significant role in snowmelt–discharge dynamics. However, mapping complex karst features and the resulting surface‐groundwater exchanges at large scales remains infeasible. In this study, timeseries analysis of continuous discharge and specific conductance measurements were combined with gridded snowmelt predictions to characterize seasonal streamflow response and evaluate dominant watershed controls across 12 monitoring sites in a karstified 554 km2watershed in northern Utah, USA. Immense surface water hydrologic variability across subcatchments, years and seasons was linked to geologic controls on groundwater dynamics. Unlike many mountain watersheds, the variability between subcatchments could not be well described by typical watershed properties, including elevation or surficial geology. To fill this gap, a conceptual framework was proposed to characterize subsurface controls on snowmelt–discharge dynamics in karst mountain watersheds in terms of conduit flow direction, aquifer storage capacity and connectivity. This framework requires only readily measured surface water and climatic data from nested monitoring sites and was applied to the study watershed to demonstrate its applicability for evaluating dominant controls and climate sensitivity.

     
    more » « less
  4. Abstract

    By utilizing functional relationships based on observations at plot or field scales, water quality models first compute surface runoff and then use it as the primary governing variable to estimate sediment and nutrient transport. When these models are applied at watershed scales, this serial model structure, coupling a surface runoff sub‐model with a water quality sub‐model, may be inappropriate because dominant hydrological processes differ among scales. A parallel modeling approach is proposed to evaluate how best to combine dominant hydrological processes for predicting water quality at watershed scales. In the parallel scheme, dominant variables of water quality models are identified based entirely on their statistical significance using time series analysis. Four surface runoff models of different model complexity were assessed using both the serial and parallel approaches to quantify the uncertainty on forcing variables used to predict water quality. The eight alternative model structures were tested against a 25‐year high‐resolution data set of streamflow, suspended sediment discharge, and phosphorous discharge at weekly time steps. Models using the parallel approach consistently performed better than serial‐based models, by having less error in predictions of watershed scale streamflow, sediment and phosphorus, which suggests model structures of water quantity and quality models at watershed scales should be reformulated by incorporating the dominant variables. The implication is that hydrological models should be constructed in a way that avoids stacking one sub‐model with one set of scale assumptions onto the front end of another sub‐model with a different set of scale assumptions.

     
    more » « less
  5. Abstract

    As stormwater control measures (SCMs) capture surface runoff from impervious areas, a shift in the water balance and flow regime components may emerge in urban watersheds, but the amount of SCM treatment needed to detectably shift these components may vary. We used the Soil and Water Assessment Tool (SWAT) hydrologic model to assess the sensitivity of 16 hydrologic metrics as an increasingly dense rain garden SCM network was applied across the West Creek watershed, near Cleveland, Ohio (USA). As the area treated by SCMs increased, annual baseflow increases matched decreases in surface runoff, while water yield and evapotranspiration changes remained small. The stream's peak response to rainfall decreased with SCM implementation across storm sizes, ranging from the threshold rainfall depth (4.8 mm) to values higher than the design storm of a single rain garden (19 mm). SCM networks draining >20% of directly connected impervious area (DCIA) significantly decreased the magnitude of discharges with a return period of less than 1 year, the percentage of time above mean flow, and flashiness. Recession slopes and annual 1‐ and 7‐day low flows exhibited a slight response that fell within uncertainty limits of the model. Water balance and rainfall response metrics exhibited the greatest sensitivity to different intensities of stormwater management, while infrequent high and low flows were resistant to detectable change even at high levels of SCM treatment when model uncertainty was included.

     
    more » « less